武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目

竣工环境保护验收监测报告

(备案稿)

建设单位: 武汉市绿色环保能源有限公司

编制单位: 湖北鑫承胜咨询有限公司

二〇二五年十一月

建设单位: 武汉市绿色环保能源有限公司

法定代表人:成超

编制单位: 湖北鑫承胜咨询有限公司

法定代表人:梅祥

监测单位: 武汉华正环境检测技术有限公司

武汉环景检测服务有限公司

湖北微谱技术有限公司

参加人员:/

编制单位联系方式:

电话: 18108636052

传真:/

地址: 湖北省红安县城关镇红金龙大道十六号二楼

邮编: 438401

建设单位营业执照:

编制单位营业执照:

目 录

1,	项目概况	1
2、	验收依据	4
	2.1 法律、法规与政策文件	4
	2.2 环境保护标准及技术规范	
	2.3 相关技术文件及批复	6
3、	项目建设情况	7
	3.1 地理位置及平面布置	7
	3.1.1 项目地理位置	7
	3.1.2 项目平面布置	7
	3.2 厂区原有项目概况	8
	3.3 本期项目建设内容	9
	3.3.1 本期项目基本信息	9
	3.4 项目运行方案	14
	3.5 主要原辅材料及燃料	. 14
	3.6 主要生产设备	. 15
	3.7 项目水平衡情况	. 17
	3.8 生产工艺及产污环节	. 19
	3.9 项目变动情况	. 26
4、	环境保护设施	.31
	4.1 污染物治理/处置设施	31
	4.1.1 废气污染源、污染物及治理措施	31
	4.1.2 废水污染源、污染物及治理措施	33
	4.1.3 噪声污染源及治理措施	36
	4.1.4 固体废物产生及处置措施	37
	4.2 其他环保措施	. 39
	4.2.1 土壤污染防治措施	39
	4.2.2 地下水污染防治措施	40
	4.2.3 规范化排污口及在线监测装置	42
	4.3 环保设施投资及"三同时"落实情况	. 44
5、	建设项目环评报告书的主要结论与建议及审批部门审批决定	. 46
	5.1 建设项目环评报告书的主要结论	. 46
	5.2 审批部门审批决定	. 51

	5.2.1 《环评报告》批复	51
	5.2.2 《环评变更报告》批复	54
6,	验收监测评价标准	56
	6.1 环境质量标准	56
	6.1.1 环境空气质量标准	56
	6.1.2 地表水环境质量执行标准	57
	6.1.3 声环境执行标准	57
	6.1.4 土壤	58
	6.1.5 地下水	60
	6.2 污染物排放执行标准	60
	6.2.1 废气污染物排放标准	60
	6.2.2 废水污染物排放标准	61
	6.2.3 厂界噪声排放执行标准	62
	6.2.4 固体废物	62
	6.3 总量控制	63
7、	验收监测工作内容	64
	7.1 环保设施调试效果	64
	7.1.1 废气监测	64
	7.1.2 废水监测	64
	7.1.3 厂界噪声监测	65
	7.1.4 固体废物监测	65
	7.2 环境质量监测	65
	7.2.1 环境空气质量现状监测	65
	7.2.2 地下水环境质量监测	66
	7.2.3 土壤环境质量监测	66
	7.3 在线比对监测	66
8,	质量保证及质量控制	67
	8.1 监测分析方法	67
	8.2 质量保证和质量控制	73
9,	验收监测结果及分析	80
	9.1 监测期间工况分析	80
	9.2 污染源监测结果	80
	9.2.1 废气监测结果	80
	9.2.2 废水监测结果	86

		9.2.3 厂界噪声监测结果	88
		9.2.4 固体废物监测结果	89
		9.2.5 污染物排放总量核算	90
	9.3	环境质量监测结果	92
		9.3.1 环境空气质量监测结果	92
		9.3.2 地下水环境	95
		9.3.3 土壤环境	97
	9.4	在线比对监测结果	98
10、	环	境管理检查	103
	10.1	1 建设项目执行国家建设项目环境管理制度情况	103
	10.2	2 环保机构和环境管理制度检查	103
	10.3	3 建设项目实施过程中环境监察情况	103
	10.4	4 环境风险防范、突发环境事故应急措施及预案	103
	10.5	5 卫生防护距离落实情况	104
		5 环评批复主要意见及批复落实情况	
11、	验	收监测结论及建议	108
	11.1	1 验收监测结论	108
		11.1.1 环保设施调试运行效果	108
		11.1.2 环境质量监测情况	113
		11.1.3 验收监测总结论	113
	11.2	2 建议	113

附件、附图及附表

附件 2:《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书的批复》(武环审[2021]13 号)
号)
附件 3: 《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环评变更有关意见的复函》 123 附件 4: 《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目掺烧一般工业固废(含污泥)非重大变动环境影响分析报告》专家评审意见 125 附件 5: 本期项目总量批复 127 附件 6: 排污积交易证书 129 附件 7: 排污许可证 130 附件 8: 项目焚烧炉设计说明书 130 附件 8: 项目焚烧炉设计说明书 131 附件 9: 建设项目竣工时间和调试时间公示网页截图 136 附件 10: 验收监测工况调查表 138 附件 11: 突发环境事件应急预案备案表 140 附件 12: 危险废物委托处置合同 55 附件 13: 炉渣委托处置合同 55 附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表的批复》(武环江夏审(2025)23 号) 158 附件 15: 飞灰螯合固化物坛等合合同 150 附件 16: 飞灰螯合固化物坛输合同、台账及转移联单 162 附件 17: 惰性废弃物处置协议 163 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施各案表 175 附件 20: 企业环保管理相关制度文件 173 附件 19: 重点排污单位污染源自动监控设施各案表 175 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 189 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 189 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340
处理及环保提标改造(炉排炉改造)项目环评变更有关意见的复函》 123 附件 4: 《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目掺烧一般工业固废(含污泥)非重大变动环境影响分析报告》专家评审意见 125 附件 5: 本期项目总量批复 127 附件 6: 排污权交易证书 129 附件 7: 排污许可证 130 附件 8: 项目焚烧炉设计说明书 131 附件 9: 建设项目竣工时间和调试时间公示网页截图 136 附件 10: 验收监测工况调查表 138 附件 11: 突险吃物委托处置合同 150 附件 13: 炉透秃托处置合同 150 附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表的批复》(武环江夏审(2025)23 号) 158 附件 15: 飞灰螯合固化物特许经营合同 162 附件 16: 飞灰螯合固化物污染管合同 162 附件 16: 飞灰螯合固化物污染经营后 162 附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 189 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 340
附件 4: 《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目掺烧一般工业固废(含污泥)非重大变动环境影响分析报告》专家评审意见
造 (炉排炉改造) 项目掺烧一般工业固废 (含污泥) 非重大变动环境影响分析报告》 专家评审意见
专家评审意见 125 附件 5: 本期项目总量批复 127 附件 6: 排污权交易证书 129 附件 7: 排污许可证 130 附件 8: 项目焚烧炉设计说明书 131 附件 9: 建设项目竣工时间和调试时间公示网页截图 136 附件 10: 验收监测工况调查表 138 附件 11: 突发环境事件应急预案备案表 140 附件 12: 危险废物委托处置合同、转移联单及处置单位资质证明 142 附件 13: 炉渣委托处置合同 150 附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表 158 附件 15: 飞灰螯合固化物特许经营合同 162 附件 16: 飞灰螯合固化物运输合同、台账及转移联单 164 附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 239 附件 21-5: 雨水检测报告 239 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目范围及中环境示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 5: 本期项目总量批复
附件 6: 排污权交易证书
附件 7: 排污许可证 130 附件 8: 项目焚烧炉设计说明书 131 附件 9: 建设项目竣工时间和调试时间公示网页截图 136 附件 10: 验收监测工况调查表 138 附件 11: 突发环境事件应急预案备案表 140 附件 12: 危险废物委托处置合同、转移联单及处置单位资质证明 142 附件 13: 炉渣委托处置合同 150 附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表的批复》(武环江夏审〔2025〕23 号) 158 附件 15: 飞灰螯合固化物转许经营合同 162 附件 16: 飞灰螯合固化物运输合同、台账及转移联单 164 附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 8: 项目焚烧炉设计说明书 131 附件 9: 建设项目竣工时间和调试时间公示网页截图 136 附件 10: 验收监测工况调查表 138 附件 11: 突发环境事件应急预案备案表 140 附件 12: 危险废物委托处置合同、转移联单及处置单位资质证明 142 附件 13: 炉渣委托处置合同 150 附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表的批复》(武环江夏审(2025)23 号) 158 附件 15: 飞灰螯合固化物特许经营合同 162 附件 16: 飞灰螯合固化物运输合同、台账及转移联单 164 附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 239 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 9: 建设项目竣工时间和调试时间公示网页截图 136 附件 10:验收监测工况调查表 138 附件 11: 突发环境事件应急预案备案表 140 附件 12: 危险废物委托处置合同、转移联单及处置单位资质证明 142 附件 13: 炉渣委托处置合同 150 附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表的批复》(武环江夏审(2025)23 号) 158 附件 15: 飞灰螯合固化物特许经营合同 162 附件 16: 飞灰螯合固化物运输合同、台账及转移联单 164 附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 239 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4:验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 10:验收监测工况调查表 138 附件 11:突发环境事件应急预案备案表 140 附件 12:危险废物委托处置合同、转移联单及处置单位资质证明 142 附件 13:炉渣委托处置合同 150 附件 14:《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表的批复》(武环江夏审(2025)23号) 158 附件 15:飞灰螯合固化物特许经营合同 162 附件 16:飞灰螯合固化物与许经营合同 162 附件 17:惰性废弃物处置协议 169 附件 18:项目废水纳管情况说明 173 附件 19:重点排污单位污染源自动监控设施备案表 175 附件 20:企业环保管理相关制度文件 177 附件 21-1:在线比对检测报告 189 附件 21-2:有组织废气二噁英检测报告 189 附件 21-3:环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4:验收监测其他项目检测报告 269 附件 21-5:雨水检测报告 332 附图 1:建设项目地理位置图 338 附图 2:项目范围及周边环境示意图 339 附图 3:项目厂区总平面布置及雨污水管网示意图 340 附图 4-1:项目验收环境质量监测点位示意图 344
附件 11: 突发环境事件应急预案备案表 140 附件 12: 危险废物委托处置合同、转移联单及处置单位资质证明 142 附件 13: 炉渣委托处置合同 150 附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表的批复》(武环江夏审〔2025〕23 号) 158 附件 15: 飞灰螯合固化物特许经营合同 162 附件 16: 飞灰螯合固化物特许经营合同 162 附件 16: 飞灰螯合固化物运输合同、台账及转移联单 164 附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 12: 危险废物委托处置合同、转移联单及处置单位资质证明 142 附件 13: 炉渣委托处置合同 150 附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表的批复》(武环江夏审(2025)23 号) 158 附件 15: 飞灰螯合固化物特许经营合同 162 附件 16: 飞灰螯合固化物运输合同、台账及转移联单 164 附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 189 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 13: 炉渣委托处置合同
附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表的批复》(武环江夏审〔2025〕23 号)
的批复》(武环江夏审(2025)23 号) 158 附件 15: 飞灰螯合固化物特许经营合同 162 附件 16: 飞灰螯合固化物运输合同、台账及转移联单 164 附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 189 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 216 附件 21-4: 验收监测其他项目检测报告 239 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 332 附图 2: 项目范围及周边环境示意图 338 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 15: 飞灰螯合固化物特许经营合同
附件 16: 飞灰螯合固化物运输合同、台账及转移联单 164 附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 17: 惰性废弃物处置协议 169 附件 18: 项目废水纳管情况说明 173 附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 18: 项目废水纳管情况说明
附件 19: 重点排污单位污染源自动监控设施备案表 175 附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 20: 企业环保管理相关制度文件 177 附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 21-1: 在线比对检测报告 189 附件 21-2: 有组织废气二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 21-2: 有组织废气二噁英检测报告 216 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 21-3: 环境空气、土壤、固体废物二噁英检测报告 239 附件 21-4: 验收监测其他项目检测报告 269 附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附件 21-4:验收监测其他项目检测报告 269 附件 21-5:雨水检测报告 332 附图 1:建设项目地理位置图 338 附图 2:项目范围及周边环境示意图 339 附图 3:项目厂区总平面布置及雨污水管网示意图 340 附图 4-1:项目验收环境质量监测点位示意图 341
附件 21-5: 雨水检测报告 332 附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附图 1: 建设项目地理位置图 338 附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附图 2: 项目范围及周边环境示意图 339 附图 3: 项目厂区总平面布置及雨污水管网示意图 340 附图 4-1: 项目验收环境质量监测点位示意图 341
附图 3: 项目厂区总平面布置及雨污水管网示意图
附图 4-1: 项目验收环境质量监测点位示意图341
門內 4-2: 项目巡収行朱你监侧点世小总图
附表:建设项目竣工环境保护"三同时"验收登记表343

1、项目概况

武汉市绿色环保能源有限公司位于湖北省武汉市江夏区郑店街雷竹村,占地面积 241 亩,是以垃圾无害化焚烧发电为主营业务,兼营供热、污泥处理、厨余垃圾处理、炉渣处理等协同业务的环保型企业,服务范围包括武昌区、江夏区、洪山区、东湖高新区和沌口开发区等。公司厂区原有项目包括"武汉城市生活垃圾焚烧发电工程"(一期工程)及"武汉城市生活垃圾焚烧发电改扩建工程"(二期工程),已形成 2000 吨/d 的生活垃圾焚烧处理产能。

由于公司原有项目采用循环流化床锅炉,因其炉型特点,在入炉垃圾分类较差的情况下燃烧工况不稳定,检修频率较高。为提高锅炉燃烧稳定性,减少非正常工况运行时间,满足《市人民政府关于印发武汉市 2020 年大气污染防治工作方案的通知》(武政规〔2020〕10号〕对氮氧化物的排放要求,公司计划在焚烧厂原有厂区内对焚烧炉进行环保提标改造。此外,为满足武汉市增长的生活垃圾的处理需要,在不增加原有处理规模的情况下增大生活垃圾处理量,改善焚烧厂的燃烧条件,在新征地范围内建设生活垃圾预处理和厨余垃圾处理设施。设计改扩建内容包括以下三个方面:

- (1)生活垃圾预处理设施建设:在扩建厂区内建设 2600t/d 的垃圾预处理设施,对进厂的生活垃圾进行机械分选、破碎、筛分等预处理。
- (2)循环流化床改造为机械炉排炉:将厂区一期工程原有的3台400t/d循环流化床锅炉(1#、2#、3#炉)置换升级为2台600t/d机械炉排炉(5#、6#炉),并同时安装尾部SCR脱硝系统。
- (3) 厨余垃圾协同处置:在扩建厂区建设 500t/d 厨余垃圾预处理系统,对 厨余垃圾(主要为家庭日常生活中丢弃的果蔬及食物下脚料、剩菜剩饭、瓜果皮等易腐有机垃圾)进行预处理后入炉焚烧。

按照国家对建设项目环境保护管理的有关要求,武汉市绿色环保能源有限公司于 2020 年 9 月委托委托中国电力工程顾问集团中南电力设计院有限公司承担《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书》(以下简称《环评报告》)的编制工作,并于2021 年 9 月 17 日取得武汉市生态环境局批复(武环审〔2021〕13 号)(见附件

1);该项目环评批复后,建设单位对项目总平面布置进行了优化,将项目建设内容全部调整至扩建厂区,原有厂区已有布局维持不变,并委托委托中国电力工程顾问集团中南电力设计院有限公司开展了变动情况分析说明工作(以下简称《环评变更报告》),2022 年 8 月 11 日,武汉市生态环境局针对变动情况分析说明报告出具了《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环评变更有关意见的复函》(见附件 2),同意工程内容变动,项目变动不属于重大变更。

为积极响应《武汉市"无废城市"建设实施方案》有关要求,大力推进固体废物减量化、资源化、无害化,提高一般工业固体废弃物无害化的处理能力,三期工程建成后实际全厂生活垃圾焚烧处理能力保持 2000 吨/d 不变,将优先保证生活垃圾的处理,在不影响生活垃圾处理的前提下进行一般工业固体废弃物的掺烧处理。建设单位针对工程变动情况编制了《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目掺烧一般工业固废(含污泥) 非重大变动环境影响分析》(以下简称《非重大变动分析报告》),经专家评审,依照生态环境部《污染影响类建设项目重大变动清单(试行)》(环办环评函(2020)688 号)规定的内容判定,认为该分析报告结论"本项目变动属于非重大变动"总体可信。

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造 (炉排炉改造)项目(以下简称"三期工程")于 2022年12月开工,于 2025年7月建设完成并投入调试及试运行。目前,三期工程各类生产设备和环保设施 均运行正常,具备竣工验收监测条件。

2025年10月,武汉市绿色环保能源有限公司在生态环境公示网上对"武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目"的竣工日期及调试日期进行了公示,公示网址分别为

https://gongshi.qsyhbgj.com/h5public-detail?id=369372

https://gongshi.qsyhbgj.com/h5public-detail?id=481179, 公示情况详见附件 8。

湖北鑫承胜咨询有限公司(以下简称"我公司")受武汉市绿色环保能源有限公司委托,依据国务院令第682号《建设项目环境保护管理条例》、国环规环评[2017]4号《建设项目竣工环境保护验收暂行办法》等相关规定的要求,对三

期工程进行资料核查和现场踏勘,查阅了有关文件和技术资料,查看了污染物治理及排放、环保措施的落实情况,在此基础上,依据《建设项目竣工环境保护验收技术指南污染影响类》的要求,编制完成了《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目竣工环境保护验收监测方案》。

依据《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标 改造(炉排炉改造)项目竣工环境保护验收监测方案》,我公司委托武汉华正环 境检测技术有限公司、武汉环景检测服务有限公司、湖北微谱技术有限公司对三 期工程开展了竣工环境保护验收监测。在此基础上编制完成了《武汉城市生活垃 圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目竣 工环境保护验收监测报告》。

2、验收依据

2.1 法律、法规与政策文件

- (1) 《中华人民共和国环境保护法》,2015年1月1日修订施行;
- (2) 《中华人民共和国环境影响评价法》,2018年12月29日修订施行;
- (3)《中华人民共和国大气污染防治法》,2018年10月26日修订施行;
- (4) 《中华人民共和国水污染防治法》,2018年1月1日修订施行;
- (5)《中华人民共和国噪声污染防治法》,2021年12月24日修订,自2022年6月5日起施行;
- (6)《中华人民共和国固体废物污染环境防治法》,2020年4月29日修订,自2020年9月1日起施行;
- (7)《国务院关于修改〈建设项目环境保护管理条例〉的决定》(国务院第 682 号令),2017 年 10 月 1 日起施行:
- (8)《中华人民共和国可再生能源法》(2009 年 12 月 26 日修改, 2010 年 4 月 1 日起施行);
- (9) 《建设项目竣工环境保护验收暂行办法》(国环规环评(2017)4号文),2017年11月20日发布施行;
- (10)《关于发布<建设项目竣工环境保护验收技术指南污染影响类>的公告》(生态环境部公告 2018 第 9 号), 2018 年 5 月 16 日印发;
- (11)《关于印发〈污染影响类建设项目重大变动清单(试行)〉的通知》 (环办环评函(2020)688号),2020年12月13日印发;
- (12)《关于进一步做好建设项目环境保护"三同时"及自主验收监督检查工作的通知》(环办执法[2020]11号),2020年5月27日发布;
- (13)《关于进一步加强生物质发电项目环境影响评价管理工作的通知》(环发〔2008〕82号)
- (14)《住房城乡建设部等部门关于进一步加强城市生活垃圾焚烧处理工作的意见》(建城〔2016〕227号);
 - (15) 《湖北省生活垃圾焚烧发电中长期专项规划(2020-2030年)》;

- (16)《省生态环境厅办公室关于贯彻落实<建设项目竣工环境保护验收暂行办法>的通知》(鄂环办[2019]1号),2019年1月9日发布。
- (17)《湖北省城乡生活垃圾无害化处理全达标三年行动实施方案》(鄂政办发〔2017〕97号);
- (18)《武汉市城乡生活垃圾无害化处理全达标三年行动实施方案》(武政办〔2018〕55号)。

2.2 环境保护标准及技术规范

- (1)《建设项目竣工环境保护验收技术指南 污染影响类》生态环境部公告 2018 年第 9 号, 2018 年 5 月 16 日;
 - (2) 《生活垃圾焚烧污染控制标准》(GB18485-2014);
 - (3) 《生活垃圾填埋场污染控制标准》(GB16889-2024);
 - (4) 《大气污染物综合排放标准》(GB 16297-1996);
 - (5) 《锅炉大气污染物排放标准》(GB13271-2014);
 - (6) 《恶臭污染物综合排放标准》(GB 14551-93);
 - (7) 《污水综合排放标准》(GB 8978-1996);
 - (8) 《污水排入城镇下水道水质标准》(GB/T31962-2015);
 - (9) 《环境空气质量标准》(GB 3095-2012);
 - (10) 《地下水质量标准》(GB/T 14848-2017);
 - (11) 《地表水环境质量标准》(GB3838-2002);
 - (12) 《声环境质量标准》(GB3096-2008);
 - (13) 《工业企业厂界环境噪声排放标准》(GB 12348-2008);
- (14)《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)。

2.3 相关技术文件及批复

- (1)《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书》(中国电力工程顾问集团中南电力设计院有限公司,2021年8月);
- (2)《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源 化预处理及环保提标改造(炉排炉改造)项目环境影响报告书的批复》(武环审〔2021〕13号);
- (3)《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源 化预处理及环保提标改造(炉排炉改造)项目污染物总量指标的审核意见》(武 环函〔2021〕88号);
- (4)《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目变动情况分析说明》(中国电力工程顾问集团中南电力设计院有限公司,2022年7月);
- (5)《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源 化预处理及环保提标改造(炉排炉改造)项目环评变更有关意见的复函》(武汉 市生态环境局,2022年8月11日);
- (6)《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目掺烧一般工业固废(含污泥)非重大变动环境影响分析》(2025年10月);
- (7)《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目掺烧一般工业固废(含污泥)非重大变动环境影响分析专家评审意见》;
- (8)《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目竣工环境保护验收监测方案》。

3、项目建设情况

3.1 地理位置及平面布置

3.1.1 项目地理位置

武汉市绿色环保能源有限公司位于湖北省武汉市江夏区郑店街雷竹村,厂区经纬度为东经 114°13′、北纬 30°21′。厂址西距长江约 6.5km,南距武汉市外环线约 2.3km,东距青郑高速公路约 1.0km,北距野湖约 2.8km。厂址位于武汉市三环线以外约 13.2km。

厂址西面紧邻武汉市长山口垃圾填埋场,北面为华新环境工程有限公司生活垃圾预处理厂,南面为金竹路,东面为自然水塘。本项目卫生防护距离为100m。根据《住房城乡建设部等部门关于进一步加强城市生活垃圾焚烧处理工作的意见》(建城〔2016〕227 号)要求,确定厂界外300m为环境防护距离。

项目地理位置见附图 1,周边环境情况见附图 2。

3.1.2 项目平面布置

武汉市绿色环保能源有限公司位于湖北省武汉市江夏区郑店街雷竹村,已建一期、二期平面布置如下:

厂区最北侧为项目物流入库口,主要用于垃圾、煤等原辅材料的运输。

厂区西侧为垃圾卸料平台、垃圾库、垃圾预处理室、干煤棚、飞灰仓、渣库等。

西南侧为 1~4#焚烧车间,呈东西排布,焚烧车间南侧为烟囱、油罐区,焚烧车间北部为锅炉房。

厂区中部为汽机房、集控楼、主变压器、配电室、空压机室等。

厂区东北部为生活区、办公楼、食堂、消防水池等。食堂以南为化学水处理 车间、

综合水泵房、材料库和 4#焚烧炉使用的机力通风冷却塔。厂区东南侧为循环水加药间、渗滤液处理站、1~3#焚烧炉使用的自然通风冷却塔。

图 3.1-1 厂区原有项目(一期、二期工程)平面布置图

本次三期工程平面布置如下:

由东向西依次布置渗滤液处理站、循环水泵房、冷却塔、渗滤液综合水池、 升压站、主厂房,飞灰暂存间、烟囱、油站位于主厂房南侧,主厂房从北向南依 次布置卸料平台、垃圾坑、预处理车间及焚烧炉、炉渣和烟气处理跨。详见附图 3。

3.2 厂区原有项目概况

武汉市绿色环保能源有限公司厂区原有项目包括"武汉城市生活垃圾焚烧发电工程"(一期工程)及"武汉城市生活垃圾焚烧发电改扩建工程"(二期工程),已形成 2000 吨/d 的生活垃圾焚烧处理产能。

一期工程:于 2008年10月10日取得原湖北省环境保护局出具的《省环保局关于武汉城市生活垃圾焚烧发电工程环境影响报告书的批复》(鄂环审〔2008〕679号),垃圾焚烧能力1200吨/d。于 2011年建成并投入运行,并于 2011年

12月26日取得原湖北省环境保护局出具的《关于武汉城市生活垃圾焚烧发电工程竣工环境保护验收有关意见的函》(鄂环函〔2011〕1106号)。

二期工程:于 2014年9月2日取得原湖北省环境保护厅出具的《关于武汉城市生活垃圾焚烧发电改扩建工程环境影响报告书的批复》(鄂环审〔2014〕407号),二期扩建新增垃圾焚烧能力800吨/d。于 2015年建成并投入运行,并于2017年11月26日取得原湖北省环境保护厅出具的《关于关于武汉城市生活垃圾焚烧发电改扩建工程竣工环境保护验收有关意见的函》(鄂环审〔2017〕319号)。

厂区原有项目建设历程及环保手续一览表见表 3.2-1。

表 3.2-1 武汉市绿色环保能源有限公司厂区原有项目建设历程及环保手续一览表

 序	项目名称	建设内容	环保手续	履行情况	是否	
号		建议内谷	环评情况	验收情况	投产	
1	武汉城市生 活垃圾焚烧 发电工程 (一期工 程)	新建3台 400t/d循环 流化床锅炉, 垃圾焚烧能力 1200吨/d	于 2008 年 10 月 10 日取 得原湖北省环境保护局 出具的《省环保局关于 武汉城市生活垃圾焚烧 发电工程环境影响报告 书的批复》(鄂环审 〔2008〕679 号)	于 2011 年建成并投入运行,并于 2011 年 12 月 26 日取得原湖北省环境保护局出具的《关于武汉城市生活垃圾焚烧发电工程竣工环境保护验收有关意见的函》(鄂环函〔2011〕1106 号)	已投产	
2	武汉城市生 活垃圾焚烧 发电改扩建 工程(二期 工程)	扩建一台 800t/d 循环 流化床锅炉, 新增垃圾焚烧 能力 800 吨/d	于 2014年9月2日取得原湖北省环境保护厅出具的《关于武汉城市生活垃圾焚烧发电改扩建工程环境影响报告书的批复》(鄂环审〔2014〕407号〕	于2015年建成并投入运行,并于2017年11月26日取得原湖北省环境保护厅出具的《关于关于武汉城市生活垃圾焚烧发电改扩建工程竣工环境保护验收有关意见的函》(鄂环审(2017)319号)	已投产	

3.3 本期项目建设内容

3.3.1 本期项目基本信息

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造 (炉排炉改造)项目即本期工程环评阶段设计总投资 73895 万元,环保投资概算

8586 万元;实际投资 80000 万元,环保投资 9000 万元。本期工程主要建设内容包括:

- (1)生活垃圾预处理设施建设:在扩建厂区内建设 2600t/d 的垃圾预处理设施,对进厂的生活垃圾进行机械分选、破碎、筛分等预处理。
- (2)循环流化床改造为机械炉排炉:将厂区一期工程原有的 3 台 400t/d 循环流化床锅炉(1#、2#、3#炉)置换升级为 2 台 600t/d 机械炉排炉(5#、6#炉),并同时安装尾部 SCR 脱硝系统。
- (3) 厨余垃圾协同处置:在扩建厂区建设 500t/d 厨余垃圾预处理系统,对 厨余垃圾(主要为家庭日常生活中丢弃的果蔬及食物下脚料、剩菜剩饭、瓜果皮等易腐有机垃圾)进行预处理后入炉焚烧。

本期工程建成后全厂生活垃圾焚烧处理能力保持 2000 吨/d 不变,将优先保证生活垃圾的处理,在不影响生活垃圾处理的前提下进行一般工业固体废弃物的掺烧处理。项目严格控制掺烧比例,一般工业固体废弃物掺烧比例不超过焚烧总量的 30%,其中污泥掺烧比例不高于 10%。新增生活垃圾预处理能力 2600 吨/d、厨余垃圾预处理能力 500 吨/d 不变。

本期工程基本情况见表 3.3-1: 实际建设内容与环评对照情况见表 3.3-2。

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造 建设项目名称 (炉排炉改造) 项目 建设地点 湖北省武汉市江夏区郑店街雷竹村,武汉市绿色环保能源有限公司厂区内 建设单位名称 武汉市绿色环保能源有限公司 建设项目性质 新建 改扩建√ 技改迁建 四十一、电力、热力生产和供应业,4417 生物质发电 行业类别 项目建成后全厂生活垃圾焚烧处理能力保持2000吨/d不变,将优先保证生 活垃圾的处理,在不影响生活垃圾处理的前提下进行一般工业固体废弃物 的掺烧处理。项目严格控制掺烧比例,一般工业固体废弃物掺烧比例不超 建设规模 过焚烧总量的30%,其中污泥掺烧比例不高于10%。新增生活垃圾预处理 能力 2600 吨/d、厨余垃圾预处理能力 500 吨/d 不变。 环评批复时间 2021年9月17日 竣工时间 2025年7月31日 在线对比检测: 2025年9月3日 二噁英检测: 2025 年 8 月 24 日-25 日, 2025年8月1日 调试生产时间 现场监测时间 -2025年12月1日 2025年9月5日-6日 其他项检测: 2025年8月26日-27日 排污许可证编号: 91420115764604453R001V

表 3.3-1 本期工程基本情况一览表

有效期 2025 年 5 月 23 日至 2030 年 5 月 22 日

排污许可申请情况

环评报告审批部门	武汉市生态环境局			集团中南电力设计 艮公司	
环保设施设计单位	及施设计单位		杭州正晖建设工程有限公司		見公司
投资总概算	73895 万元	环保投资总概 算	8586 万元	比例	11.58%
实际总投资	80000 万元	实际环保投资	9000 万元	比例	11.25%
劳动定员及生产制 度	本项目运营期炉排炉改造部分无需新增劳动定员;垃圾预处理部分新增动定员为15人;厨余垃圾预处理部分新增劳动定员为10人;每台锅炉计年有效年可运行时数:8100小时及以上,本次验收以8760h计				

表 3.3-2 本期工程实际建设内容与环评对照情况

	工程	分类	环评设计建设内容(包括《环评报告》 与《环评变更报告》及其批复内容)	实际建设情况	是否发生 变动
建设地点			武汉市江夏区郑店街道雷竹村(现有 厂区)和江夏区金口街道姚湾村(扩 建厂区)	与环评一致	否
	总平面		全部布置在西侧扩建区内,原厂区已 有布局维持不变	与环评一致	否
建成后全厂处理能力			生活垃圾焚烧处理能力2000吨/d	全厂生活垃圾焚烧处 理能力保持2000吨/d 不变,将优先保证生 活垃圾的处理,在不 影响生活垃圾处理的 前提下进行一般工业 固体废弃物的掺烧处 理	是
	焚烧	类型	机械炉排炉	与环评一致	否
	炉	处理能力	2×600t/d	与环评一致	否
	余热锅炉(t/h)		中温超高压,2×84	与环评一致	否
	发电机组容量 (MW)		将现有厂区2×12MW 的汽轮发电机 组改建为55MW的汽轮发电机组	与环评一致	否
主体	生活 垃圾	处理能力	在卸料大厅东侧建设4条垃圾预处理 生产线,处理能力合计2600t/d	与环评一致	否
工程.	预处 理线	工艺	粗破碎、磁选、风选和细破碎	与环评一致	否
	厨余 垃圾 预处 理线	处理能力	在扩建厂区中部建设厨余垃圾预处理车间,尺寸为92m×88m×15m,内含厨余垃圾卸料斗、厨余垃圾预处理及成品厨余垃圾输送系统,处理能力为2×250t/d	与环评一致	否
		工艺	破碎+挤压工艺破	与环评一致	否

	-	工程	分类	环评设计建设内容(包括《环评报告》 与《环评变更报告》及其批复内容)	实际建设情况	是否发生 变动
配套		2	给水	生活用水:市政自来水工业用水:利用现有取水设施(3×120m³/h 水泵),利用原DN300 取水管线	与环评一致	否
工程		4	非水	各类废(污)水经处理后回用,回用 富余部分接入市政污水管网。	与环评一致	否
1生	升		i改造及电 j送出	另行环评	另行环评	否
	ţ	立圾	运输方式	环卫车密闭运输	与环评一致	否
储	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		卸料大厅	设置1个垃圾卸料大厅,位于扩建厂区 东侧,尺寸为110m×24m×7m,内设 12个垃圾卸料门,卸料大厅全密闭布 设,内设抽风系统以维持负压。	与环评一致	否
运 工 程				四期工程合并考虑,本期一次建成, 本期储存量约10200t(满足5#、6#炉7 天额定处理量);保留现有厂区2#原 生垃圾库,储存量8000t(满足4#炉7 天 额定处理量)	与环评一致	否
			织排放控	封闭布置,负压设计,设置事故活性 炭除臭系统	与环评一致	否
		烟气净化处 理工艺		3T+E燃烧控制+SNCR 脱硝+半干法 脱酸+干法脱酸+活性炭吸附+布袋除 尘+SCR脱硝	与环评一致	否
	畑	脱	类型	20%氨水溶液	与环评一致	否
环保工	烟气治理	销还原剂	储罐容量	厂区西南侧新建氨水站,新建1座 100m³氨水罐,预留四期100m³氨水罐	与环评一致	否
工 程		烟	形式	套筒式烟囱1座	与环评一致	否
7.王		囱	烟囱高度 (m)	80	与环评一致	否
	除臭系统	臭 垃圾预处埋 车间除臭系 统		垃圾库及预处理车间均密闭布设,通 过垃圾焚烧炉的一、二次风机使其形 成负压,恶臭气体通过风机引入焚烧 炉处理。	与环评一致	否

-	L程:	分类	环评设计建设内容(包括《环评报告》 与《环评变更报告》及其批复内容)	实际建设情况	是否发生 变动
	事故除臭系统		设置一套活性炭除臭系统,在垃圾焚烧发电厂焚烧炉检修时使用。除臭系统包括除臭风机(2台,每台风力为100000m³/h),活性炭吸收塔(装载活性炭10t),事故除臭排气筒(位于厂房顶部32m高)。	与环评一致	否
	排	水系统设 置	清污分流、雨污分流、污污分流	与环评一致	否
		活污水处 理系统	化粪池处理后接入市政污水管网	与环评一致	否
	渗 滤	处理能力	1200 m ³ /d	与环评一致	否
废水处理	液处理站	工艺	预处理+厌氧反应器+膜处理系统+ NF纳滤+RO(部分)	与环评一致	否
理	渗滤液收集 池		容积300m³,位于垃圾库南侧	与环评一致	否
	初期雨水收 集池容积		设置一个126m³的初期雨水池,用于收集垃圾运输道路及地磅区域的初期雨水	与环评一致	否
	应急事故水 池容积		新建4000m³事故水池,位于渗滤液处 理站内	与环评一致	否
吗	東声》	声治理措施 设备隔声、吸声、消声,基础减震;		与环评一致,声屏障 用实心砖墙代替	否
		飞灰仓	位于主厂房内,容积为400m³,顶部设 置布袋除尘器	与环评一致	否
	飞	固化	螯合+水泥固化,处理能力为15t/h	与环评一致	否
固	灰	固化物暂 存间面积	面积1000m ² ,位于自然通风冷却塔西侧,地面进行重点防渗	与环评一致	否
废		去向	青山北湖飞灰填埋场	与环评一致	否
处	炉	渣库	位于主厂房内,容积为1640 m³	与环评一致	否
置	渣	去向	综合利用	与环评一致	否
	惰	性物料暂 存间	面积200m²,位于垃圾预处理车间南 侧,地面进行重点防渗	与环评一致	否
	危险废物暂 存间		面积100m²,位于1#上料平台下方,地 面进行重点防渗	与环评一致	否

3.4 项目运行方案

本项目《环评报告》及《环评变更报告》设计项目建成后焚烧生活垃圾 2000 吨/日,新增生活垃圾预处理能力 2600 吨/日、厨余垃圾预处理能力 500 吨/日。

本期工程于 2022 年 12 月开工,于 2025 年 7 月建设完成并投入调试及试运行,三期工程建成后实际运行方案为:全厂生活垃圾焚烧处理能力保持 2000 吨 /d 不变,将优先保证生活垃圾的处理,在不影响生活垃圾处理的前提下进行一般工业固体废弃物的掺烧处理。该变动已于 2025 年 10 月委托湖北鑫承胜咨询有限公司编制完成了《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目掺烧一般工业固废(含污泥)非重大变动环境影响分析》。

3.5 主要原辅材料及燃料

本期工程建成运行后,全厂主要原辅材料及燃料实际消耗量统计数据详见下表。

序 号	原料名称	单 位	实际年 耗量	来源	主要成分	贮存场所	用途及去向
1	原生生活 垃圾	t	1186250	武汉市环卫部 门收集的居民 生活垃圾	生活垃圾	原生垃圾 库、生活垃 圾库	预处理后焚 烧
2	厨余垃圾	t	228125	武汉市环卫部 门收集的居民 厨余垃圾	菜叶、剩菜、剩饭等	不贮存	预处理后焚 烧
3	一般工业 固废(生活 垃圾不足 时掺烧一 般工业固 废)	t	136800	武汉市及周边 工业企业	废纸、废纺织品、木 屑、废塑料、城镇生 活污水处理厂污泥 等	依托生活 垃圾库	预处理后焚 烧
4	轻柴油	t	50	外购	轻柴油	柴油罐	焚烧
5	消石灰	t	2500	外购	氢氧化钙	石灰仓	进入飞灰
6	喷射活性 炭	t	212	外购	碳元素,颗粒状: 325 目,碘吸附值: ≥ 1000mg/g	活性炭仓	进入飞灰

表 3.5-1 主要原辅材料及能源消耗一览表

序 号	原料名称	单 位	实际年 耗量	来源	主要成分	贮存场所	用途及去向
7	除臭系统 活性炭	t	10	外购	改性活性炭,柱状, 粒径4~6目,碘吸附 值≥800mg/g,四氯 化碳吸附值≥50%, 苯吸附值≥ 350mg/g,亚甲基蓝 150 mg/g,堆积密度 0.55~0.65g/cm³。	活性炭除臭系统	吸附后焚烧
8	氨水	t	1440	外购	20%氨水溶液	氨水罐	脱销反应消 耗
9	螯合剂	t	801	外购	高分子有机螯合剂 30%以上二硫代氨 基甲酸盐	螯合剂罐	进入飞灰固 化物
1 0	水泥	t	2003	外购	商品水泥	水泥厂	进入飞灰固 化物
1 2	煤	t	1000	外购	商品煤	干煤棚	供4#流化床 锅炉 (二期工程) 稳燃使用

3.6 主要生产设备

本期工程设备全部外购,实际较环评阶段基本一致,局部有细微调整,本项 目实际设备清单见表 3.6-1。

序 所在 数量 设备名称 设备型号/规格 号 位置 (台/套) 型式: 机械炉排炉 1 焚烧炉 2 额定垃圾处理量: 600t/d 进口额定温度: 450℃ 2 余热锅炉 蒸汽压力: 13.5 MPa 2 额定蒸发量: 84t/h 3 出渣机 出力能力: 10t/h 4 焚烧 系统 点火燃烧器 4 7.05MW 2 2 5 辅助燃烧器 7.05MW 入口风温: 20℃ 6 一次风机 24 流量: 87750m³/h 入口风温: 20℃ 二次风机 7 2 流量: 37600m³/h

表 3.6-1 本期工程主要设备清单

 序 号	所在 位置	设备名称	设备型号/规格	数量 (台/套)
8		炉墙冷却风机	入口风温: 20℃ 流量: 8250m³/h	2
9		引风机	风温: 20℃ 流量: 165500m³/h	2
10		事故除臭系统风机	型式:单吸离心式 入口风温: 20℃ 流量: 100000m³/h	2
11		半干法脱酸系统	喷头:旋转喷雾器 内径8500 直筒H=9000 进口烟气温度:190℃ 出口烟气温度:160℃ 烟气停留时间:≥20s	2
12		活性炭喷射系统	活性炭储仓: 40m³ 活性炭喷射装置	1
13		布袋除尘器	有效过滤面积: 4100 m² 入口烟气温度: 160℃ 滤料: PTFE 清灰方式: 离线/在线 压力损失: ≤1500Pa	2
14		SNCR 喷嘴	双流体喷枪	22×2
15		SCR 系统	SGH+GGH 入口温度: 150~170℃ SGH+GGH 出口温度: 180~250℃ SCR 催化剂: 蜂窝型低温催化剂	2
16		烟囱	高度80m,内径2.4m	2
17		进料皮带机1	B=1400mm, V=0.8-1.5m/s, 平型	3
18		进料皮带机2	B=1400mm, V=0.8-1.5m/s, 平型	3
19		汇总皮带机1	B=1200mm,V=1m/s,槽型	3
20		汇总皮带机2	B=1200mm, V=1m/s, 槽型	3
21		汇总皮带机3	B=1200mm,V=1m/s,槽型	3
22		磁选机	RCDD-14, V=2.5-4m/s	6
23	生活	风选机	1FFX1600A,处理量: 25-35T/H	3
24	垃圾	风选机轻物质出料皮带机	B=1200mm, V=1m/s, 槽型	3
25	与处理系	风选机重物质出料皮带	B=1200mm,V=1m/s,槽型	3
26	理系 统	细破碎机	KOMET 2800	3
27	- 7h	筛上物风选机进料皮带机	B=1600mm, V=2.7m/s, 平型	3
28		磁选机	RCDD-14, V=2.5-4m/s	3
29		滚筒筛	1FDS1590A, B=1500mm, L=9000mm	3
30		滚筒筛筛下物出料皮带	B=1400mm, V=1m/s, 槽型	3
31		粗破碎机	处理能力55t/h,碎后粒径<150mm	3
32		粗破机出料皮带机	B=1400mm, V=0.8-1.5m/s, 平型	3

	所在 位置	设备名称	设备型号/规格	数量 (台/套)
33		垃圾库抓斗	Q=20t, S=40m, H=23m	6
34	F 4	进料仓	料仓容积: 40m³	3
35	厨余 垃圾	破碎机	液压驱动 出力能力15t/h	3
36	预处 理系	挤压机	出力能力: 10~15t/h	3
37	· 连尔 · 统	挤压机筛下物汇总螺旋	Φ400mm, 材质不锈钢	1
38	700	挤压机筛上物汇总螺旋	Φ400mm, 材质不锈钢	1

3.7 项目水平衡情况

根据企业实际生产情况,本项目运营期取水系统、循环水系统、锅炉补给水 系统、生活给水系统均依托现有厂区设施。

根据企业实际用水量核算,年均水平衡表见表 3.7-1,水平衡图见图 3.7-1。

用水部门	给水			排水		
用小部门	新鲜水	原料带入水	回用	回用(阶梯利用)	损耗	排水
原水预处理系统	3840	0	0	3816	24	0
机力冷却塔	0	0	95613	94200	1224	189
自然通风冷却塔	0	0	146931	144768	1802.4	360.6
化学水处理站	0	0	288	288	0	0
锅炉系统	0	0	237.6	48	189.6	0
降温池	0	0	315	315	0	0
工业废水处理站	0	0	50.4	50.4	0	0
化验室用水	1	0	0	1	0	0
出渣机	0	0	118.4	0	118.4	0
 石灰制浆系统	0	0	96	0	96	0
半干法脱酸系统	0	0	63	0	63	0
飞灰固化车间	0	0	12	0	12	0
地面冲洗	0	0	60	45	15	0
渗滤液处理站	0	898	46	299	207	438
回用水池	0	0	349.4	349.4	0	0
生活用水	15	0	0	0	3	12
合计	3856	898	244179.8	244179.8	3754.4	999.6

表 3.7-1 本工程年均水平衡一览表 单位: m³/a

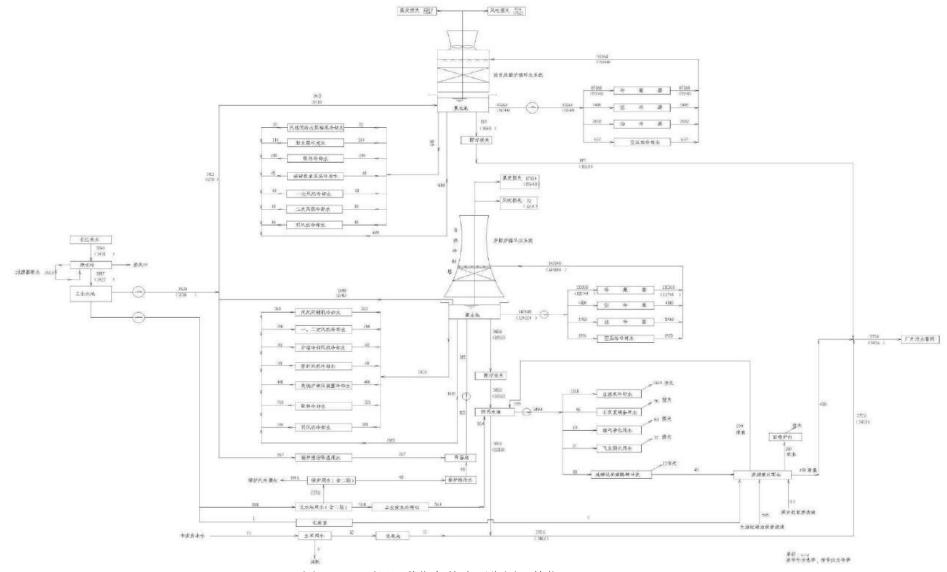


图 3.7-1 项目运营期年均水平衡图 单位: m³/a

3.8 生产工艺及产污环节

(1) 生活垃圾预处理

包括垃圾接收、贮存、预处理、厂内输送的过程。生活垃圾经武汉市城市管理执法委员会由专用垃圾车运入垃圾焚烧发电厂物流入口后,经过地磅秤称重后通过新建的运输栈桥进入垃圾卸料大厅,卸入垃圾库。垃圾库是一个封闭式且正常运行时气压为负压的建筑物,采用半地下结构。在垃圾库内的,垃圾通过垃圾吊车抓斗抓到粗破碎机中,对垃圾进行初步的破碎,将垃圾的粒径破碎至250mm以下。经初步破碎的垃圾进入磁选系统,选出垃圾中的铁金属,随后通过滚筒筛对磁选后的垃圾进行第一次筛选,将粒径小于80mm的垃圾选出,直接输送至进入成品垃圾库。对于粒径大于80mm的垃圾再次进行磁选,进一步选出铁金属。随后将磁选后的垃圾进入风选机进行风选,风选可以把物料分成重组分(灰土金属-玻璃-陶瓷)、中等组分(木材一硬塑料PVC一有机垃圾)、轻质组分。重组分主要为不可燃物,进入厂内惰性物质贮存车间贮存,随后外运出厂,金属类外售综合利用,陶瓷、灰土、玻璃类外运填埋。中等组分物质和轻质进入细破碎机再次进行破碎,在细破碎机中,将垃圾的粒径破碎至80mm以下,随后通过皮带送入成品垃圾库。

工艺中的产污环节主要有:

- 1) 垃圾运输与贮存过程中的恶臭气体;
- 2) 垃圾贮存过程中产生的渗滤液:
- 3)破碎、风选过程中的渗滤液、恶臭气体、噪声:
- 4)经磁选机风选出的不可燃烧的铁金属和陶瓷、灰土、玻璃等惰性固体废物;
 - 5)垃圾成品运输出厂过程中皮带输送噪声、恶臭气体。

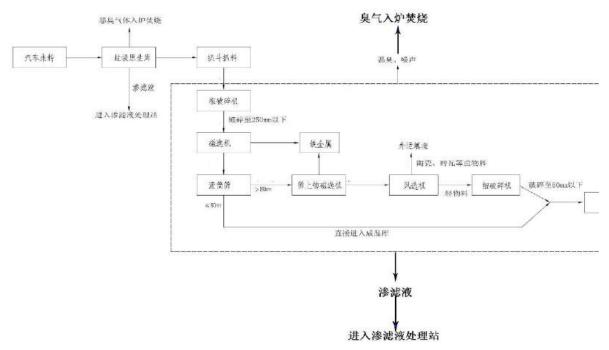


图 3.8-1 运营期生产工艺流程图-生活垃圾预处理工艺流程图及产污环节

(2) 厨余垃圾预处理

厨余垃圾经收集后由武汉市城市管理执法委员会运输至厨余垃圾预处理车间,直接卸入厨余垃圾投料仓。料仓底部配置渗滤液收集系统,将渗滤液输送至厂内渗滤液处理站处理。固相物料通过仓底的螺旋输送机提升至破袋破碎机,将包裹物料的袋子撕碎,并将各类物料的粒径破碎到80mm以下。经破碎的物料通过螺旋输送机输送至挤压单元,通过挤压之后筛上物进入成品垃圾库,随后同成品生活垃圾一并处理后焚烧系统;挤压机筛下物(液相物体)输送至液相泵坑,送入渗滤液处理站处理。

工艺中的产污环节主要有:

- 1) 厨余垃圾运输与卸料过程中的恶臭气体;
- 2) 厨余垃圾在卸料仓内产生的渗滤液:
- 3) 厨余垃圾在破碎、挤压过程中产生的恶臭气体及渗滤液;
- 4)成品垃圾运输出厂过程中皮带输送噪声、恶臭气体。

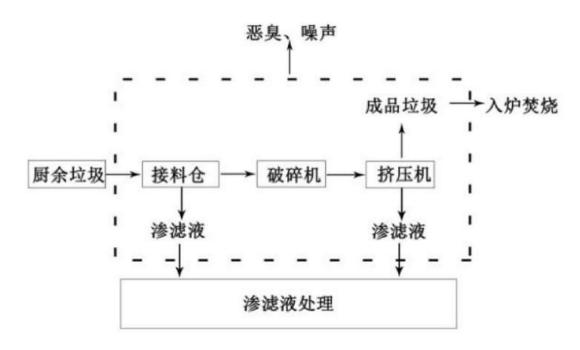


图 3.8-2 运营期生产工艺流程图-厨余垃圾预处理工艺流程图及产污环节

(3) 经处理的垃圾入炉焚烧

经处理后的成品垃圾通过密闭皮带传输至成品垃圾库,在垃圾库内通过垃圾 吊车抓斗抓到焚烧炉给料斗,送入焚烧炉内燃烧。此过程的主要产污环节为垃圾 卸料产生的恶臭气体和成品垃圾中少量的渗滤液。恶臭系统通过负压系统,经抽 风机通入焚烧炉焚烧,成品垃圾中的渗滤液经收集进入渗滤液处理站。焚烧炉内 垃圾焚烧产生的高温烟气与余热锅炉发生热交换,余热锅炉吸收热量产生过热蒸 汽,再由汽轮发电机将机械能转变成电能。焚烧产生的炉渣排入渣库。

厂内配置化验室,内含 pH 计,钠度计,电导率仪,磷酸根分析仪,硅酸根分析仪,溶解氧分析仪,煤炭量热仪,电子天平,高温炉等仪器,用于日常厂内的检验,化验室检验过程中会产生少量废水(主要污染物为酸碱、SS),经收集后接入渗滤液处理站处理。

化验室内贮存少量如硫酸、盐酸、氨水、化学药品、硝酸银、酚酞等化学试剂,废化学试剂(含试剂瓶)属于危险废物,年产量约为0.1t/a,拟经收集后外委有资质单位处置。

本项目烟气净化采用"SNCR 脱硝+半干法脱酸+干法脱酸+活性炭吸附+布袋除尘器+SCR 脱硝"工艺。在焚烧炉内喷入氨水溶液,脱除烟气中的部分 NOx,随后烟气进入烟道,对布置其中的高温过热器、低温过热器、省煤器进行放热,

烟气温度降至 200℃左右。降温后的烟气进入旋转喷雾式半干法反应塔,喷雾干燥吸收法吸收剂采用 Ca(OH)2 浆液,烟气从喷雾干燥吸收塔的上部进入,下部流出烟气中的 SO2 及 HCl 等酸性气体通过与 Ca(OH)2 反应后得到脱除。在进入布袋除尘器之前中喷入活性炭、Ca(OH)2 粉,以吸附烟气中的重金属和二噁英类物质,进一步脱除酸性气体,随后通过布袋除尘,将烟气中的灰尘、反应生成物加以捕捉。经除尘后的烟气进入 SCR 反应塔,在塔内通过 GGH+SGH 将烟气温度加热至 180~250℃以达到 SCR 催化剂的工作温度,在 SCR 催化剂的作用下与氨水进行反应,进一步去除烟气中的 NOx,烟气经处理达标后通过引风机进入80m 烟囱后排入大气。

三期工程工艺流程及产污节点图见图 3.8-3。

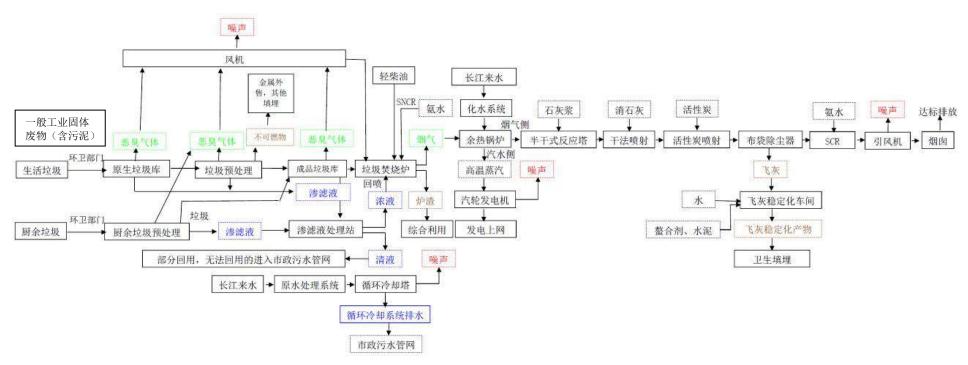


图 3.8-3 运营期生产工艺流程图-三期工程

三期项目产排污环节情况如下表:

表 3.8-1 项目主要产排污环节汇总表

污染源	名称	来源	污染物种类	治理措施及去向	
	G1恶臭气 体	生活垃圾库 及生活垃圾 预处理车间	NH ₃ 、H ₂ S	由垃圾库的一次风机、二次风 机统一送至焚烧炉焚烧	
		厨余垃圾预 处理车间	NH ₃ 、H ₂ S	抽入生活垃圾库(含原生 垃圾和成品垃圾)及预处理车	
		渗滤液处理 站	NH ₃ 、H ₂ S	间中。在垃圾库上空设置吸风口,通过焚烧炉风机抽取垃圾库内的空气供燃烧使用,以保持垃圾库负压状态	
废气	G2垃圾焚 烧废气	5#、6#焚烧 炉	颗粒物、酸性气体 (HCl、SO ₂ 等)、氮 氧化物(NOx)、一氧 化碳(CO)、重金属 (Hg、Pb、Cr等)和 有机剧毒性污染物(二 噁英、呋喃等)等	焚烧废气经3T+E燃烧控制 +SNCR脱硝+半干法脱酸+干 法脱酸+活性炭吸附+布袋除尘 +SCR脱硝处理达标后,引至 80m套筒式烟囱排放。设置一 套活性炭除臭系统,在垃圾焚 烧发电厂焚烧炉检修时使用	
	G3各类仓 粉尘	消石灰粉 仓、活性炭 仓、水泥仓 及飞灰仓	颗粒物	均为室内布置,且在顶部设置 了布袋除尘器,各仓因进出料 产生的粉尘收集经布袋除尘器 处理达标后排放	
	G4运输粉 尘	原料、物料 运输	颗粒物	地面洒水,无组织排放	
	生活垃圾渗滤液		COD, BOD ₅ , NH ₃ -N	采用"预处理+厌氧+两级	
	化验室废水		pH、SS	A/O+UF+纳滤(NF)+RO(针 对回用部分进行深度处理)"处	
	冲券	走废水	COD、BOD ₅ 、SS	理工艺后优先回用,余量接入 市政污水管网	
废水	厨余垃圾渗滤液		COD、BOD5、NH3-N	经"隔油池+两级气浮"除油 后与渗滤液混合进入初沉池, 与垃圾渗滤液混合后进一步深 度处理	
	初其	月雨水	COD、BOD5、SS、 NH3-N	进入渗滤液处理站进行处理	
	生活	后污水	COD、BOD5、NH3-N	化粪池处理后接入市政污水管 网	
	化学水处理	里站系统废水	рН	中和处理后回用	
	锅炉	排污水	温度: 50~70℃	降温处理后回用	
	循环	水排水	盐分/	接入市政污水管网	

污染源	名称	来源	污染物种类	治理措施及去向	
噪声	设备噪声	机械设备	等效A声级	设备进行隔声、减振、消声等 治理措施,加强设备的运行管 理,部分厂界设置声屏障	
	S1 惰性物 质	垃圾预处理	陶瓷、灰土、金属、玻 璃等	金属类物质外售综合利用单 位,陶瓷、灰土、玻璃等送入 垃圾填埋场填埋	
	S2 除臭系 统废活性 炭	除臭系统	废活性炭		
	S3 生活垃 圾	办公生活	纸屑、塑料袋等	进入厂内垃圾焚烧炉焚烧处理	
	S4 污水处 理污泥	渗滤液处理 站	污泥		
	S5炉渣	焚烧炉	炉渣	目前外售江苏磊航环保科技有限公司综合利用。后期待老厂区"炉渣综合利用项目"建成后自行综合利用	
固体废 物	S6水处理 固体废物	化学水处 理、渗滤液 处理	化学水处理、渗滤液处 理废膜	进入厂内垃圾焚烧炉焚烧处理	
	S7废布袋	布袋除尘器	重金属、二噁英		
	S8废矿物 油	设备维护	石油烃		
	S9废铅蓄 电池	直流系统更 换	废铅板、废铅膏和酸液	分类暂存于危废暂存间,交湖	
	S10化验室 废试剂(含 试剂瓶)	化验室	酸、碱、重金属、有机物	北润恒环境科技有限公司处 置。	
	S11脱硝系 统废催化 剂	烟气处理 系统	V、Ti		
	S12飞灰		重金属、二噁英		
	S13飞灰固 化物	飞灰鳌合固 化系统	重金属、二噁英	固化后送至青山北湖飞灰填埋 场填埋	

3.9 项目变动情况

经现场踏勘及资料收集情况表明,武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目实际建设与环评设计阶段发生了少量变动,结合《关于印发〈污染影响类建设项目重大变动清单(试行)〉的通知》(环办环评函〔2020〕688号)中重大变动判定依据,本项目变动情况详见表 3.9-1:

表 3.9-1 项目变动情况一览表

	衣 3.9-1 以日 文 幼情况—见衣							
序 号	项目	清单内容	环评设计情况(包括《环 评报告》与《环评变更 报告》及其批复内容)	实际建设情况	变动情况分析			
1	性质	建设项目开发、使用功能发生变化的。	武汉市江夏区郑店街道 雷竹村(现有厂区)和 江夏区金口街道姚湾村 (扩建厂区)	与环评阶段一致	无变化			
2		生产、处置或储存能力增大 30%及以上的。	停用现有的 3×400t/d 循环流化床锅炉,升级改造为 2×600t/d 炉排炉;设置一个 126m³的初期雨水池;新建 4000m³事故水池;渣库容积为1640m³	与环评阶段一致	无变化			
3	规模	生产、处置或储存能 力增加,导致废水第 一类污染物排放量 增加的。	设计日处理生活垃圾约 2000 吨/日。新增生活垃 圾预处理能力 2600 吨/ 日规模不变、厨余垃圾 预处理能力 500 吨/日。	全厂生活分子。 一生活力保持 2000 中/d 不变,垃圾有, 一块一个, 一块一个。 一,一,一,一,一,一,一,一,一,一,一,一,一,一,一,一,一,一,一,	为积极市"建设方案的体现象有废害的人。 "无》有效,是这人为资,是是一个人。" "无》,是一个人。" "无》,是一个人,是一个人。" "无》,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人			

			环评设计情况(包括《环		
序	项	 清单内容	评报告》与《环评变更	 实际建设情况	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
号	目	19711	报告》及其批复内容)	人的是女情况	X 537 17 17 17 17 17 17 17 17 17 17 17 17 17
					称《非重大变动分析报告》),经专家评审,依照生态环境部《污染影响类建设项目重大变动清单(试行)》(环办环评函(2020)688号)规定的内容判定,认为该分析报告结论"本项目变动属于非重大变动"总体可信
4		位标产增物颗应硫入机区氧物染性 的置导量域 相加版 点,放为,放为,放为,对,对,对,对,对,对,对,对,对,对,对,对,对,对,对,	项目位于 PM _{2.5} 、O ₃ 不达 标区	掺烧一般工业固废 (含污泥)后二氧 化硫、氮氧化物、 可吸入颗粒物排放 量不增加	不属于重大变动
5	地点	重新选址;在原厂址 附近调整(包括总平 面布置变化)导致环 境防护距离范围变 化且新增敏感点的。	利用现有场区及西侧扩建区布置;第一次变动全部布置在西侧扩建区内,原厂区已有布局维持不变	与环评阶段一致	无变化

—— 序	项		环评设计情况(包括《环		
号	月	清单内容	评报告》与《环评变更 报告》及其批复内容)	实际建设情况	变动情况分析
6	生产工艺	新增产品品种或生产 表置、设备及配套设备及配套设备及配套设备及配套对料、燃料变化,导致原辅材以下情形之一: (1)新增排放污染物种类的(毒性、(1)新增排放后,每种类的(毒性、(2)位于环境质量不达标区污染物排放量增加的; (3)废水第一类的,设量增加的; (4)其他污染物排放量增加10%及以上的。	原生生活垃圾、厨余垃圾	原生生活垃圾、一 般工业固废(含污 泥)、厨余垃圾、 一般工业固废	变动后产品品种、生产工 艺不变,仅原辅材料新增 一般工业固废(含污泥), 变动后不会导致清单所 述的四种情形,不属于重 大变动。
7		物料运输、装卸、贮存方式变化,导致大气污染物无组织排放量增加10%及以上的。	生活垃圾由环卫部门经 厂区卸料大厅运输至垃 圾库暂存,厂内设活性 炭仓、消石灰粉仓、氨 水储罐、油库、炉渣库、 飞灰仓,设专用垃圾、 污泥运输通道	新增了入炉焚烧原料种类,一般工业固废由各来源单位负责密闭运输至厂内,与生活垃圾混合后入炉焚烧	物料运输、装卸、贮存方 式未变化,仅原辅材料新 增一般工业固废(含污 泥),不会导致大气污染 物无组织排放量增加,不 属于重大变动
8	环境保护措施	废气、废水污染防治 措施变化,导致第6 条中所列情形之一 (废气无组织排放、污 改为有组织排放、污 染防治措施强化或 改进的除外)或大气 污染物无组织排放 量增加10%及以上 的。	废气: 焚烧废气经 3T+E 燃烧 控制+SNCR 脱硝+半干 法脱酸+干法脱酸+活性 炭吸附+布袋除尘+SCR 脱硝处理达标后,引至 80m 套筒式烟囱排放。设置一套活性炭除臭 不 在垃圾焚烧发电厂 焚烧炉检修时使用。	与环评阶段一致	无变化

			环评设计情况(包括《环		
序	项	 清单内容	评报告》与《环评变更	实际建设情况	 变动情况分析
号	目	.,,,,,,	报告》及其批复内容)	> \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
			经超滤处理后出水进入		
			纳滤,纳滤出水部分经		
			RO 反渗透处理后进入		
			复用水池回用,其余部		
			分接入市政污水管网。		
			生活污水经化粪池处理		
			后进入市政污水管网。		
			废水总排口废水通过排		
			入市政管网进入金口污		
			水处理厂。		
9		新增废水直接排放口;废水由间接排放改为直接排放;废水直接排放;废水直接排放口位置变化,导致不利环境影响加重的。	废水总排口废水通过排 入市政管网进入金口污 水处理厂。	与环评阶段一致	无变化
10		新增废气主要排放 口(废气无组织排放 改为有组织排放的 除外);主要排放口 排气筒高度降低 10%及以上的。	焚烧废气处理后引至 80m 套筒式烟囱排放。	与环评阶段一致	无变化
11		噪声、土壤或地下水 污染防治措施变化, 导致不利环境影响 加重的。	修筑声屏障面积约为764.3m²;垃圾库、渗滤液收集池、卸料大厅、生活垃圾预处理车间、厨余垃圾预处理车间、房余垃圾预处理车间、渗滤液处理站(包括调节池、厌氧池、膜处理车间)、飞灰固化车间、飞灰固化物暂存和养护车间、危废暂存间和初期雨水池等重点防渗区;主厂房其他区域,垃圾运输栈桥、渗滤液处理站(膜处理区域)等一般防渗区	与环评阶段一致	无变化

序 号	项目	清单内容	环评设计情况(包括《环 评报告》与《环评变更 报告》及其批复内容)	实际建设情况	变动情况分析
12		固体废物利用处置 方式由委托外单位 利用处置改为自行 利用处置的(自行利 用处置设施单独开 展环境影响评价的 除外);固体废物自 行处置方式变化,导 致不利环境影响加 重的。	炉渣外售武汉力道新型材料有限公司综合利用	炉渣目前外售江苏 磊航环保科技有限 公司综合利用。后 期待老厂区"炉渣 综合利用项目"建 成后自行综合利用	"炉渣综合利用项目"已单独开展环境影响评价, 不会导致不利环境影响 加重,不属于重大变动
13		事故废水暂存能力 或拦截设施变化,导 致环境风险防范能 力弱化或降低的。	新建 4000m³ 事故水池	与环评阶段一致	无变化

由上表分析可知,本工程实际建设内容与环境影响报告及其批复内容基本一致,以上变动均不构成重大变动,无需重新报批环评文件,变动部分纳入竣工环境保护验收管理。

4、环境保护设施

4.1 污染物治理/处置设施

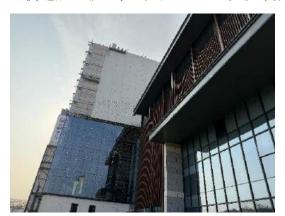
4.1.1 废气污染源、污染物及治理措施

本项目产生的废气的主要可分为有组织废气及无组织废气两部分:

(1) 有组织废气治理措施

垃圾及一般工业固体废物(含污泥)在焚烧过程中产生的烟气,其中的主要污染物为粉尘(颗粒物)、酸性气体(HCl、HF、SOx等)、重金属(Hg、Pb、Cr等)、一氧化碳和有机剧毒性污染物(二噁英、呋喃等)等;

本项目烟气净化采用"SNCR 脱硝+半干法脱酸+干法脱酸+活性炭吸附+布袋除尘器+SCR 脱硝"工艺。在焚烧炉内喷入氨水溶液,脱除烟气中的部分 NOx,随后烟气进入烟道,对布置其中的高温过热器、低温过热器、省煤器进行放热,烟气温度降至 200℃左右。降温后的烟气进入旋转喷雾式半干法反应塔,喷雾干燥吸收法吸收剂采用 Ca(OH)2 浆液,烟气从喷雾干燥吸收塔的上部进入,下部流出烟气中的 SO2 及 HCl 等酸性气体通过与 Ca(OH)2 反应后得到脱除。在进入布袋除尘器之前中喷入活性炭、Ca(OH)2 粉,以吸附烟气中的重金属和二噁英类物质,进一步脱除酸性气体,随后通过布袋除尘,将烟气中的灰尘、反应生成物加以捕捉。经除尘后的烟气进入 SCR 反应塔,在塔内通过 GGH+SGH 将烟气温度加热至 180~250℃以达到 SCR 催化剂的工作温度,在 SCR 催化剂的作用下与氨水进行反应,进一步去除烟气中的 NOx,烟气经处理达标后通过引风机进入80m 烟囱后排入大气。


- 4、5号垃圾库各设置一套活性炭除臭系统,在垃圾焚烧发电厂焚烧炉检修时使用。
 - (2) 无组织废气控制措施

项目无组织废气主要来自进厂的原始垃圾在卸料过程中和堆放在垃圾库内散发出的恶臭以及污水处理过程中产生的恶臭气体,其主要成分为 H₂S、NH₃等。

本项目采取的恶臭控制措施主要包括:

①采用新型密封、防渗漏的垃圾运输专用车,减少运输过程中的恶臭污染:

- ②卸料大厅设计为微负压密闭结构,卸车平台大门装设空气幕隔离大厅内外空气流动,防止卸料厅臭气外逸;
- ③设置自动卸料门,使垃圾库密闭化,无车卸料时保证垃圾库密封,维持垃圾库负压,减少灰尘飞扬和恶臭外逸;
- ④垃圾库顶部设置带过滤网的一次风抽气口,将臭气抽入炉膛内作为焚烧炉 助燃空气,同时使垃圾库内距离风口最远处的负压在-10Pa 以上,以防恶臭外逸;
- ⑤在渗滤液调节池和厌氧系统设置排风系统,将调节池内的恶臭气体送入风管,使调节池处于负压,防止臭气逸散。风管接至垃圾库,与垃圾库臭气一起进入焚烧炉处理;
- ⑥厌氧池产生的沼气引入焚烧炉进行助燃,非正常工况采用沼气燃烧系统直接燃烧;
- ⑦从源头控制,即规范垃圾库的操作管理,利用抓斗对垃圾进行搅拌和翻动,可使进炉垃圾热值均匀,且可避免厌氧发酵,减少恶臭产生。

主厂房及焚烧炉

汽轮发电机组

SNCR 脱硝

烟气处理系统

80m 排气筒 (含 4 根在建四期排气筒)

事故状态下垃圾库除臭排气筒

渗滤液处理站沼气燃烧系统

半封闭式垃圾入库口

封闭式垃圾卸料厅

垃圾仓负压监测

4.1.2 废水污染源、污染物及治理措施

本项目主要废水包括:生活垃圾渗滤液、化验室废水、冲洗废水、厨余垃圾 渗滤液、初期雨水、生活污水、化学水处理站系统废水、锅炉排污水、循环水排 水。

项目按照"雨污分流"原则建设排水系统,厨余垃圾渗滤液经"隔油池+两级气浮"除油预处理,生活污水经化粪池预处理后,与生活垃圾渗滤液、化验室废水、冲洗废水、初期雨水等一同进入渗滤液处理站深度处理,本期工程新建处

理能力为1200m³/d 的渗滤液处理站,采用"预处理+厌氧+两级A/O+UF+纳滤(NF)+RO(针对回用部分进行深度处理)"处理工艺,处理后的清液满足相关回用水要求后回用于除渣机、飞灰固化、烟气净化、石灰制浆、厂区冲洗及绿化等,未回用的清液与循环水排水一并接入市政污水管网,后进入金口污水处理厂深度处理,尾水排入长江(武汉段)。

渗滤液处理站处理工艺流程见图 4.1-1; 各类废(污)水产排情况见下表 4.1-1。

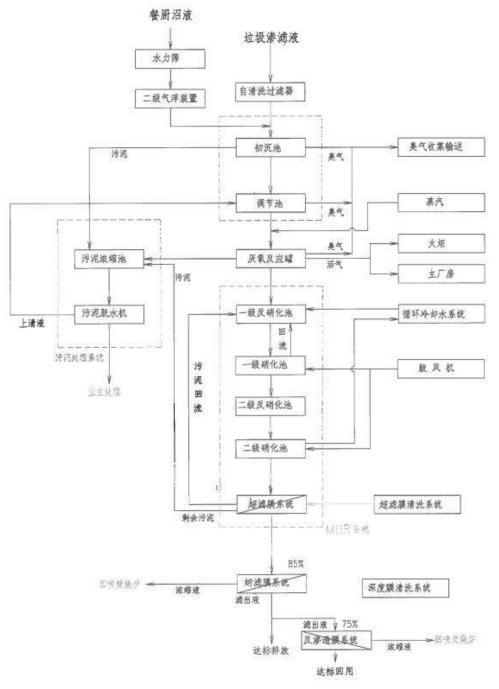


图 4.1-1 渗滤液处理站工艺流程图

表 4.1-1 项目废(污)水产排情况一览表								
项目	排放形式	主要污染因子	处理方式	排放(回用)去向				
生活垃圾渗 滤液	连续	COD、BOD5、NH3-N	采用"预处理+厌氧+两级 A/O+UF+纳滤(NF)+RO					
化验室废水	连续	pH、SS	(针对回用部分进行深度	渗滤液产生量较				
冲洗废水	连续	COD, BOD ₅ , SS	处理)"处理工艺	少,经污水处理站				
厨余垃圾渗滤液	连续	COD、BOD5、NH3-N	经"隔油池+两级气浮"除油后与渗滤液混合进入初沉池,与垃圾渗滤液混合 后进一步深度处理	处理后基本回用, 少量接入市政污 水管网。浓缩液回 喷焚烧炉。				
初期雨水	间歇性	COD、BOD ₅ 、SS、 NH ₃ -N	进入渗滤液处理站进行处 理					
生活污水	连续	COD、BOD5、NH3-N	化粪池处理后进入渗滤液 处理站深度处理	接入市政污水管 网				
化学水处理 站系统废水	连续	рН	中和处理	回用				
锅炉排污水	连续	温度: 50~70℃	降温处理	回用				
循环水排水	间歇性	盐分/	/	接入市政污水管				

预处理系统

渗滤液综合水池(生化池、事故池)

厌氧处理系统

渗滤液处理站

RO 单元

初期雨水池

渗滤液处理站全景图

4.1.3 噪声污染源及治理措施

本工程噪声源主要来自生产设备的运行及修理、运输原料车辆进出厂区产生的噪声。

建设单位对噪声采取的防治措施包括:

- ①优先考虑采用符合国家规定的噪声标准的设备,同类设备优先选择噪声较低的设备;
 - ②对汽轮机、给水泵等装设隔声罩,对空压机间进行厂房隔声
- ③在锅炉排汽口、送风机吸风口、空压机送风口等处安装消声器,以减少空气动力性噪声;
 - ④对大型设备采用基础减震处理;
 - ⑤修筑实体墙声屏障等。

在采取以上控制措施后,本项目厂界噪声不会对周边环境产生明显影响。

厂房隔声

实体墙声屏障

4.1.4 固体废物产生及处置措施

本项目固体废物包括工作人员生活垃圾、剩滤液处理站污泥、除臭系统废活性炭、水处理系统废膜、磁选产生的惰性物质、炉渣、飞灰、废机油、废布袋、废脱硝催化剂、废铅蓄电池等。

项目除臭系统废活性炭、水处理系统废膜暂未产生,后期产生后与工作人员生活垃圾及渗滤液处理站污泥一同入炉焚烧处理;磁选按产生的惰性物质外售综合利用;项目炉渣目前外售江苏磊航环保科技有限公司综合利用,后期待老厂区"炉渣综合利用项目"建成后自行综合利用;项目飞灰经厂内"鳌合"处理后由武汉凯路运输有限公司外运青山北湖飞灰填埋场填埋处理。

废机油、废布袋、废脱硝催化剂、废铅蓄电池均属于危险废物,厂区内已设置了危废暂存间临时存放,危废暂存间按照《危险废物贮存污染控制标准》(GB 18597-2023)、《危险废物识别标志设置技术规范》(HJ 1276-2022)等规范和标准要求进行建设,危废暂存后定期交由湖北润恒环境科技有限公司清运处理。

采取上述治理措施后,固体废物的综合利用率、安全处置率可达 100%,不会 对环境构成污染影响。

	• • •	7177.0 = 777		322110
固废 类别	项目	环评设计 产生量	实际产生 量	处置方式
	废机油	2t/a	暂未产生	
危险	废布袋	2400 条 /4a	暂未产生	分类暂存于危废暂存间,后期交湖北
废物	废脱硝催化剂	15t/3a	暂未产生	润恒环境科技有限公司处置。
	废铅蓄电池	104 只 /12a	暂未产生	

表 4.1-2 项目运营期固废产生及处置情况一览表

固废 类别	项目		环评设计 产生量	实际产生 量	处置方式
	飞灰		40060t/a	10000t	经厂内"鳌合"处理满足 GB16889 中 6.3 条要求后由武汉凯路运输有限公司 外运青山北湖飞灰填埋场填埋
		炉渣	144522t/a	36130t	炉渣目前外售江苏磊航环保科技有限 公司综合利用。后期待老厂区"炉渣 综合利用项目"建成后自行综合利用
が几	除臭系统废活性炭		10t/a	暂未产生	进入焚烧炉焚烧处理
一般 工业	惰性 物质	磁选金属	8658t/a	2160t/	外售综合利用
固体		其他	60606t/a	100t/	进入填埋场填埋
废物	水处理固	化学水处理过 程中产生的废 离子交换树脂	1t/4a	0	已调整为膜工艺处理,不再产生废离 子交换树脂,新增部分废膜入炉焚烧 处理
	废	渗滤液处理产 生的废膜	0.12t/4a	暂未产生	入炉焚烧处理
生活 垃圾	生活垃圾		240t/a	60t/a	入炉焚烧处理
污泥	渗滤液处理站污泥				

危废暂存间

危废暂存间内部分区隔断及导流沟

危废暂存间标识标牌

危废暂存间废液收集池

飞灰暂存库

飞灰暂存库

4.2 其他环保措施

4.2.1 土壤污染防治措施

(1) 源头防控

采取成熟可行的烟气治理技术,同时加强运行管理减少非正常工况的时间,确保各类烟气污染物排放满足《生活垃圾焚烧污染控制标准》(GB18485-2014)要求,以减少大气沉降对土壤的影响。落实各项固体废物的综合利用途径,确保100%妥善处置。危险废物在厂内贮存按照《危险废物贮存污染控制标准》(GB18597-2001)相关要求设置危险废物暂存间,做好防渗措施,在危险废物外运过程中落实危废转运联单制度,委托有资质的单位进行运输,确保无跑冒滴漏。针对各类废(污)水的性质和产生途径,设置废水收集处理系统,并对各类水池进行防渗处理,对于可能因泄漏造成地表漫流的污水管道,要求各类管线在施工过程中选用符合规范的材料,防止各类废(污)水泄漏至外界土壤。

(2) 讨程防控

本项目对于可能发生泄漏引起垂直入渗造成土壤污染的区域包括垃圾库、渗滤液收集池、卸料大厅、生活垃圾预处理车间、厨余垃圾预处理车间、渗滤液处理站(包括调节池、厌氧池、膜处理车间)、飞灰固化车间、飞灰固化物暂存和养护车间、危废暂存间和初期雨水池等进行了重点防渗;厂内种植较强吸附能力的植物进行绿化;对于可能因泄漏造成地表漫流的污水管道,要求各类管线在施工过程中选用符合规范的材料,污水管线和地面进行硬化,并运行过程中定期对管线进行巡查,防止各类废(污)水泄漏至外界土壤。

(3) 土壤跟踪监测措施

企业制定了土壤跟踪监测措施,结合项目可能造成土壤污染的途径,在厂内的垃圾库旁、厂外的雷竹村张家岭,同升村双凤魏设置土壤监测点位,定期进行土壤监测,一旦发现有土壤污染的迹象,立即调查污染原因,提出整改方案。

4.2.2 地下水污染防治措施

(1) 源头防治措施

地下水污染的防治措施与保护对策按照"源头控制、分区防治、污染监控、应急响应"的原则确定,本项目主要污染源是垃圾库、渗滤液收集池、生活垃圾预处理车间、厨余垃圾预处理车间、渗滤液处理站(包括调节池、厌氧池、MBR池)、飞灰固化车间、飞灰固化物暂存和养护车间、危废暂存间和初期雨水池,依据本项目污染水质特点、项目区域水文地质条件,主要防治措施如下:

- ①垃圾库、渗滤液收集池、渗滤液处理站(包括调节池、厌氧池、MBR 池)、初期雨水池的池底、地面及四壁采用防渗混凝土并喷涂防渗涂料。
- ②在厂区上游、下游、侧向、垃圾库边界和渗滤液处理站边界分别设置地下水观测井,观测地下水位水质的变化与污染情况,按照本评价提出的环境管理要求对地下水定期检测。
- ③卸料大厅、生活垃圾预处理车间、厨余垃圾预处理车间、飞灰固化车间、 飞灰固化物暂存和养护车间、危废暂存间地面采取防渗措施,采用防渗混凝土修 建建筑物(构筑物),地面铺设涂抹防渗材料。

(2) 污染防治分区划分

- ①重点污染防治区:指位于地下或者半地下的生产功能单元,污染地下水环境的污染物泄漏后不容易被及时发现和处理的区域或部位、以及容易产生地下水污染风险事故较大的区域。包括垃圾库、渗滤液收集池、卸料大厅、生活垃圾预处理车间、厨余垃圾预处理车间、渗滤液处理站(包括调节池、厌氧池、MBR 池)、飞灰固化车间、飞灰固化物暂存和养护车间、危废暂存间和初期雨水池等。
- ②一般污染防治区: 厂区内上述重点污染防治区以外的其它建筑区,主要有主厂房其他区域,垃圾运输栈桥、渗滤液处理站(纳滤膜、RO 膜处理区域)等。
 - ③非污染防治区:行政管理区、绿化区等。

(3) 分区防渗措施

根据防渗参照的标准和规范,结合施工过程中的可操作性和技术水平,针对不同的防渗区域采用典型防渗措施如下,在具体设计中应根据实际情况在满足防 渗标准的前提下作必要的调整。

①重点污染防治区

按照《环境影响评价导则--地下水环境》,重点防渗区防渗效果等效黏土防渗层 Mb>6m,K<10-7cm/s。

重点防渗区典型防渗结构自下而上分别为:第1层采用素土夯实;第2层级配石垫层;第3层采用600g/m²的长丝无纺土工布作为HDPE 土工膜的膜下保护层;第4层采用6mm的HDPE 土工膜(要求防渗系数≤10⁻¹⁰cm/s,此层为实际起到防渗作用的层);第5层采用600g/m²的长丝无纺土工布作为HDPE土工膜的膜上保护层;第6层为厚度不小于200mm的砂石层,作为HDPE土工膜的膜上保护层;第7层为地表的混凝土地地面。

在以上防渗措施或等效的方式措施情况下,防渗层能有效阻隔污染物下渗进入地下水环境。在考虑防渗措施失效的非正常工况下,本项目将对厂区下游地下水产生一定的影响,在设置完善的监测和应急处理方案后可以有效地发现和防范这种影响。

②一般污染防治区

按照《环境影响评价导则地下水环境》,一般防渗区防渗效果应等效黏土防渗层 $Mb\geq 1.5m$, $K\leq 10^{-7}cm/s$ 。

典型防渗结构自下而上分别为:第一层为素土夯实;第二层为砂石层,厚度 >300mm;第三层为抗渗混凝土,要求抗渗等级>P6,厚度为100mm~150mm。

(4) 地下水监测措施

为监控项目对区域地下水的影响,本项目在运行期应制定地下水环境监测计划,在厂区地下水上游、下游、侧向、垃圾库边界和渗滤液处理站边界设置 5 口监测井,按照本评价制定的监测计划对地下水进行监测,监测因子为 pH、氨氮、硝酸盐、亚硝酸盐、挥发性酚类、氰化物、砷、汞、铬(六价)、总硬度、铅、氟、锅、铁、锰、溶解性总固体、高锰酸盐指数、硫酸盐、氯化物、总大肠菌群、

菌落总数等。一旦发现有地下水污染的迹象,应立即调查污染原因,转移地下水污染源,对破损部位进行修复切断污染途径。

防渗施工现场照片

4.2.3 规范化排污口及在线监测装置

企业按照 《环境保护图形标志》及《污染源监测技术规范》设置了规范化的排污口及相应的环境图形标志。

项目焚烧废气排气筒按《固定污染源烟气排放连续监测技术规范》

(HJ/T75-2017) 中的相关要求安装了烟气连续监测系统(CEMS),烟气连续监测采样点分别位于焚烧炉排放口烟道上;在烟道上设置了较为规范的监测孔和采样平台。烟气连续监测系统(CEMS)监测内容包括:SO₂、NOx、CO、HCl、O₂、颗粒物、温度,压力,流速,湿度,并已于管理部门联网。

厂区废水总排口设置有 COD、氨氮在线监控装置,并已与管理部门联网。

烟气连续监测系统 (CEMS)

焚烧废气在线监测系统(已联网)

总排口水质在线监测室

污水总排口

渗滤液处理站监控系统

总排口水质在线监测设备

综合水池污水排放口

全厂监控中心

4.3 环保设施投资及"三同时"落实情况

本期工程设计总投资 73895 万元、设计环保投资 8586 万元,占项目总投资的 11.58%。实际总投资 80000 万元、实际环保投资 9000 万元,占项目总投资的 11.25%。项目环保投资及"三同时"竣工验收清单见下表。

表 4.3-1 项目环保投资及"三同时"落实情况一览表

项目				环保投资	(万元)
	坝目	内容	落实情况	环评	实际
		烟气净化及飞灰稳定化系统	已落实		
		半干法+干法脱酸系统	已落实		
	焚烧烟气治	SNCR 脱硝	已落实	4600	4000
	理	SCR 脱硝	己落实	4600	4800
		焚烧烟气在线连续监测系统	己落实		
क्ते.		集束式烟道及烟囱	己落实		
废气		卸料大厅空气幕	己落实	130	130
· ·	7人 台	密闭栈桥	己落实	50	50
	除臭	事故除臭装置	己落实	100	100
		负压在线监测系统	已落实	10	10
	除尘	石灰仓、活性炭仓、水泥仓、 飞灰仓顶部除尘	己落实	50	50
		垃圾预处理车间除尘	己落实	100	100
	水处理系统	渗滤液收集处理系统等	己落实	2000	2100
废业	初期雨水收 集	初期雨水收集池及管道等	己落实	10	10
水	厂区排口在 线监测	厂区排口在线监测	己落实	15	15
		主体设备选用选择低噪声设	己落实	纳入主体工	纳入主体工
	噪声治理	备,厂房隔声	山谷头	程	程
		厂界修建声屏障	己落实	97	108
		除灰渣系统	己落实	500	500
E	国体废物处理	飞灰固化养护系统	己落实	200	200
μ	国体及初处垤	危废暂存间	己落实	80	80
		惰性物质暂存间	己落实	50	50
地下水及土壤防治		防渗处理(垃圾库、渗滤液收 集池、调节池、飞灰稳定化车 间等)	已落实	400	440
		地下水监测井	已落实	5	10
	环境风险	甲烷、氨气检测仪,应急预案	己落实	50	50
	厂区绿化	绿化	己落实	24	32

~~~	<b>-</b>	茶小库石	环保投资(万元)		
项目 	内容	落实情况     环评     实际       已落实     10     10       己落实     已在除臭措 施中考虑 施中考虑 施中考虑 产生 强力 是在噪声治 理费用考虑 理费用 考虑 理费用 是落实     已在噪声治 理费用 建费用 建力 全位 理费用 是不知 理费用 是一种 理费用	实际		
公众监督	厂门口竖立公共电子屏	已落实	10	10	
	密闭栈桥	已落实		已在除臭措 施中考虑	
<b>"</b> \\ ∀′ \	厂界修建声屏障	已落实		已在噪声治 理费用考虑	
"以新带老"环保 措施	新建垃圾库及预处理车间	已落实		纳入主体工 程	
	车辆冲洗系统	己落实	5	5	
	新建集束烟囱	已落实	, ,,, ,,,,	已在烟气治 理费用考虑	
施工期环保投资	含化粪池、沉砂池、临时排水 沟、抑尘措施、生活垃圾收集	已落实	100	150	
	合计		8586	9000	

# 5、建设项目环评报告书的主要结论与建议 及审批部门审批决定

# 5.1 建设项目环评报告书的主要结论

### 5.1.1 项目污染防治措施要求

- (1) 废气
- ①有组织排放污染控制措施

本项目营运期产生的有组织废气主要为焚烧炉废气(颗粒物、SO2、HCl、NOX)。

本项目采用"半干法脱酸+干法脱酸"对烟气进行脱酸处理; 焚烧炉通过"3T+E"的燃烧控制分解二噁英,并设置 SCR+SNCR 脱硝工艺对烟气进行脱硝处理; 本项目采用脉冲式除尘器去除烟气颗粒物; 在脉冲式除尘器前烟道喷入的活性炭以有效吸附烟气中的重金属物质以及部分酸性气体、二噁英。本项目烟气采用 80m 高套筒式集束烟囱高空排放。

- ②无组织排放污染控制措施
- A.垃圾库恶臭气体污染控制措施
- a.采用新型密封、防渗漏的垃圾运输专用车将垃圾运送进厂,以减少运输过程中的恶臭污染。
- b.垃圾库设计为微负压密闭结构,卸车平台大门装设空气幕隔离大厅内外空 气流动,防止卸料厅臭气外逸。
- c.垃圾运输栈桥密闭化布设,并设置自动快开门,无车卸料时保证垃圾库密封,维持垃圾库负压,减少灰尘飞扬和恶臭外逸。
- d.垃圾库顶部设置带过滤网的抽气口,通过一次风机将臭气抽入焚烧炉炉膛 内作为助燃空气。
- e.规范垃圾库的操作管理,利用抓斗对垃圾进行搅拌和翻动,使垃圾进炉垃圾热值均匀,避免垃圾的厌氧发酵,减少恶臭产生。
- f.除臭系统设置双备电源,在事故状态下及时开启备用电源,保证除臭风机 正常运转,保持垃圾库的负压。

- g.垃圾库内设置事故状态下活性炭除臭系统,并及时检查和更换,在事故状态下能对可能挥发的恶臭气体进行吸附,减少恶臭系统挥发量。
- h.本项目用地红线为边界设置 300m 环境防护距离,并划定规划控制区,禁止新建居民点、学校等敏感建筑物。
- i.定期对卸料大厅、地磅区、运输道路和栈桥进行冲洗,保证厂区清洁无洒落垃圾。
  - B.垃圾预处理车间恶臭气体污染控制措施
  - a.垃圾预处理车间采用全密闭布设,各类预处理设备均在封闭厂房内布置。
- b.垃圾预处理车间设置抽风系统,将车间内的恶臭气体抽入垃圾库,确保预处理车间处于负压状态。再通过焚烧炉的一次风机同垃圾库中的恶臭气体一起抽入焚烧炉焚烧处理。
  - C.渗滤液处理站恶臭污染防治措施
- a.项目渗滤液处理站应为封闭设计,各废水处理设施(如调节池、厌氧罐等)均布置在渗滤液处理站内。
- b.在渗滤液调节池和厌氧系统设置排风系统,排风机将调节池内被恶臭污染的空气送入风管内,使调节池处于负压状态。风管接至垃圾库,与垃圾库臭气一起进入焚烧炉焚烧处理。
  - D.物料贮存粉尘污染控制措施
  - a.消石灰粉

本项目设置了 2 个消石灰储仓,布设在主厂房内属于室内布置,仓顶上装有布袋除尘器,在装料时除尘器自动投入运行。

#### b.活性炭

本项目设置了1个活性炭储仓,布设在主厂房内属于室内布置,仓顶部设布 袋除尘器,在装料时除尘器自动投入运行。

#### c.飞灰仓

本项目飞灰仓为封闭仓,采用防渗混凝土基础,并以钢结构支撑,飞灰不与 地表直接接触,飞灰仓位于室内布置,其顶部设置了布袋除尘器,在输送时除尘 器自动投入运行。

#### d.渣库

本项目采用湿除渣的方式,炉渣含水量较高,且渣库位于室内布置。渣库运行时产生的少量扬尘在位于厂房内部,由于重力沉降作用缓慢沉降至厂区地面,不会外排至环境。

#### e.水泥仓

本项目设置了1个水泥仓,水泥仓位于飞灰固化车间内,属于室内布置,仓 顶部设布袋除尘器,在装料时除尘器自动投入运行。

#### (2) 废水

#### ①初期雨水

厂内设置了雨水管网和初期雨水收集池。初期雨水收集池内设置了切换溢流系统,在初期雨水池满后可自动让后期雨水溢流至雨水管网排出,保证初期雨水、雨水及其他污水互相不混合。初期雨水通过池底的管网送往渗滤液调节池。后期雨水由雨水管网通过雨水排口外排。

垃圾渗滤液汇集至渗滤液收集池后再进入渗滤液输送管道,送往渗滤液调节池。

车间、地磅区、卸料大厅、运输栈桥均设置污水沟,可防止冲洗水漫流至雨水收集系统,上述区域的冲洗水经收集后也送往渗滤液调节池。

#### ②生活污水处理措施

生活污水经化粪池处理后进入市政污水管网。

#### ③冲洗废水处理措施

本项目冲洗废水主要为车间冲洗水、地磅区冲洗水、卸料大厅冲洗水和运输 栈桥冲洗水,经收集后进入渗滤液处理站处理。

#### ④垃圾渗滤液处理措施

本项目渗滤液产量较大,渗滤液无法全部回用于工艺用水,本项目对渗滤液尽量回用,对部分纳滤清液设置 RO 反渗透系统,处理后的清夜达到《城市污水再生利用工业用水水质》(GB/T19923-2005)和《城市污水再生利用城市杂用水水质》(GB/T 18920-2020)相关标准后回用于除渣机、飞灰固化、烟气净化、石灰制浆、厂区冲洗等,无法回用的接入市政污水管网。

#### ⑤渗滤液处理站工艺

生活垃圾渗滤液、冲洗废水、初期雨水经污水管网收集后进入渗滤液处理站, 先经过滤器后进入沉淀池,在沉淀池中加药剂混凝沉淀后再自流进入调节池均质 均量。调节池中的废水经提升泵进入厌氧罐,厌氧系统中去除大部分有机污染物 (COD),厌氧出水渗滤液进入 A/O 系统。

厨余垃圾渗滤液直接进入厨余垃圾单独设置的厌氧罐(含调节罐、厌氧反应器等),在厌氧罐中先混合均匀,并进行水解酸化,而后送入厌氧发酵系统进行厌氧消化,厌氧出水进入统一的 A/O 系统。

厌氧出水首先进入 A 池(缺氧池),随后污水通过推流进入 O 池(好氧池),再回流至 A 池进行反硝化脱氮。经 A/O 处理后出水进入外置式管式超滤膜进一步去除大分子污染物,经超滤处理后出水进入纳滤,纳滤出水部分经 RO 反渗透处理后进入复用水池回用,其余部分接入市政污水管网。

#### (3) 噪声

本项目噪声源主要来各类机械设备,噪声源强约为75dB(A)~85dB(A)。 采用合理布局,设备采用基础减振等措施,并通过基座减震、厂房隔声后可有效 控制厂界噪声。根据噪声预测结果,结合现场厂区的噪声超标情况,环评提出以 下噪声防护措施:

- ①在现有厂区,靠近2#3#主变附近厂界修筑声屏障,高3.5m,长约115m。
- ②在现有厂区,靠近自然通风冷却塔附近厂界修筑声屏障,高 4.5m,长约 85m。
  - ③在现有厂区,靠近 1#主变附近厂界修筑声屏障,高 3.5m,长约 105m。
  - ④在扩建厂区,靠近卸料大厅附近厂界修筑声屏障,高 5m,长约 101m。
    - (4) 固体废物
- ①飞灰:本项目锅炉焚烧飞灰经厂内"鳌合+固化"处理满足 GB16889 6.3 条 要求后由武汉凯路运输有限公司外运青山北湖飞灰填埋场填埋。
  - ②炉渣: 本项目锅炉焚烧炉渣拟外售武汉力道新型建材有限公司综合利用。
- ③员工生活垃圾及渗滤液处理站污泥:员工生活垃圾及渗滤液处理站污泥拟 入炉焚烧。
  - ④除臭系统废活性炭:事故除臭系统废活性炭拟进入焚烧炉焚烧处理。

- ⑤惰性物质: 经磁选出的金属拟外售综合利用; 陶瓷、灰土、玻璃类拟进入填埋场填埋。
- ⑥水处理固体废弃物:本项目化学水处理过程中产生的废离子交换树脂、渗滤液处理产生的废膜均拟入炉焚烧处理。
- ⑦危险废物:本项目危险废物的产生量为废机油 2t/a,废布袋 2400 条/4a,废脱硝催化剂 15t/3a,废铅蓄电池 104 只/8a,化验室废试剂 0.1t/a,外委有资质的单位处置。

#### (5) 总量管理

根据武汉市生态环境局《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目污染物总量指标的审核意见》(武环函(2021)88号),本项目实施后新增COD17.5t/a、氨氮1.75t/a。总量指标替代来源为2021年黄家湖污水处理厂扩建项目形成的削减量。

### 5.1.2 环评总结论

本项目主体工程包括 2600t/d 垃圾预处理系统、500t/d 的厨余垃圾预处理系统、3×400t/d 流化床锅炉改建为 2×600t/d 机械炉排炉。本项目的建设拟在提高武汉绿色环保能源有限公司的入炉垃圾热值,减少燃煤消耗,提高烟气排放达标稳定性,降低 NOx 的排放,同时响应《武汉市生活垃圾分类管理办法》,为区域的厨余垃圾提供处置终端。

本项目符合国家产业政策、法规标准,符合武汉市城市总体规划、环保规划和土地利用规划,符合区域"三线一单"的要求。本项目提标改造单元(炉排炉改造并加装 SCR 脱硝)属于《市人民政府关于印发武汉市 2020 年大气污染防治工作方案的通知》提标改造项目,垃圾预处理单元和厨余垃圾预处理单元已纳入了《湖北省疫后重振补短板强功能"十大工程"城市补短板工程项目库》,垃圾预处理单元已纳入了武汉市 2019 重点项目库。武汉市城市管理执法委员会已同意将本项目纳入《武汉市城市管理发展"十四五"规划》、《武汉市环境卫生专项规划(2020~2035)》。通过采取有效的污染防治和生态保护措施,可使得各项污染物排放满足国家相关排放标准要求。经预测评价,本项目建设对区域环境质量的影响可满足国家相关环境质量标准和环评导则的要求。在采取本报告提出的各项环境保护措施的前提下,从环境保护角度评估,本项目建设是可行的。

## 5.2 审批部门审批决定

### 5.2.1 《环评报告》批复

《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书的批复》(武环审〔2021〕13号),具体内容如下:

武汉市绿色环保能源有限公司:

你公司报送的《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及 环保提标改造(炉排炉改造)项目环境影响报告书》(以下简称《报告书》)及 相关资料已收悉。经研究,现批复如下:

一、你公司拟投资 73895 万元,在武汉市江夏区郑店街雷竹村及金口街姚湾 村实施武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改 造(炉排炉改造)项目,项目由武汉城市生活垃圾分类资源化预处理项目(项目 代码 2018-420115-44-02-077686)、武汉城市生活垃圾焚烧发电环保提标改造项 目(项目代码 2019-420115-44-03-050705)、长山口厨余垃圾焚烧协同处理工程 项目(项目代码 2020-420115-77-02-064089)等 3 个部分组成。项目主要建设内 容包括: 在现有厂区内拆除原有垃圾预处理车间、垃圾运输栈桥、卸料大厅、原 生垃圾库、飞灰固化物暂存车间、危险废物暂存间、初期雨水收集池,将3台 400 吨/日循环流化床锅炉置换升级为 2 台 600 吨/日机械炉排炉,并配套建设全 密闭运输栈桥、初期雨水收集池、烟气净化系统、点火及助燃系统、飞灰仓、渣 库、飞灰固化物养护和暂存车间、飞灰固化系统等配套公辅设施; 在扩建厂区内 新建生活垃圾卸料大厅、生活垃圾预处理车间、厨余垃圾预处理车间以及原生垃 圾库、成品生活垃圾库、垃圾运输系统、渗滤液收集池、渗滤液处理系统、事故 水池、初期雨水池、惰性物料暂存间、危险废物暂存间、事故除臭系统等配套设 施。项目建成后,全厂生活垃圾焚烧处理能力保持2000吨/日不变,新增生活垃 圾预处理能力 2600 吨/日、厨余垃圾预处理能力 500 吨/日(详见《报告书》)。

在全面落实《报告书》中提出的各项污染防治措施和风险防范措施的基础上,项目所产生的环境影响可以得到控制,从环境保护角度,同意你公司按照《报告书》中所列项目的建设内容、规模、地点和污染防治措施进行项目建设。

- 二、同意《报告书》采用的评价标准,该《报告书》可作为项目环保设计和环境管理的依据。
  - 三、在实施建设项目时,你公司应重点做好以下环保工作:
- (一)加强项目施工期间的环境教育与管理,文明施工,规范操作,合理安排作业时间,降低施工过程污水、扬尘、噪声等对周边环境的影响。加强现有设施、设备拆除活动污染防治,避免造成土壤和地下水污染。加强项目建设期间生活垃圾处理工作的衔接,既要避免生活垃圾处理工作受到影响,也要杜绝超标排放和恶臭气体无组织排放导致周边环境污染。
- (二)按照"雨污分流"原则建设项目排水系统。按《报告书》要求分别建设渗滤液处理站、RO反渗透系统、渗滤液收集池、初期雨水收集池等设施。项目运行产生的废水应分质处理、优先回用,垃圾渗滤液、化验室废水、垃圾运输车辆与卸料大厅冲洗水、收集的初期雨水等排入渗滤液处理站处理,渗滤液处理站浓液回喷至焚烧炉,部分清液通过RO反渗透系统处理满足有关标准要求后分别回用于厂区冲洗以及出渣、飞灰固化、烟气净化、石灰制浆等工段,未回用的清液与经化粪池预处理的生活污水、循环冷却系统外排废水一并通过市政污水管网进入金口污水处理厂进一步处理。外排废水应满足《污水综合排放标准》(GB8978-1996)表4中三级标准限值要求(其中重金属类污染物应满足《生活垃圾填埋场污染控制标准》<GB16889-2008>表2限值要求,氨氮、总氮、总磷等污染物应满足《污水排入城镇下水道水质标准》<GB/T31962-2015>表1中A级限值要求)。规范设置厂区废水总排口,按要求安装在线监控装置并与管理部门联网。
- (三)严格落实各项废气污染防治措施。加强焚烧炉运行管理,严格控制焚烧炉温度、停留时间等工况条件,有效减少二噁英等污染物生成。垃圾库、卸料大厅、渗滤液处理站、生活垃圾预处理车间、厨余垃圾预处理车间等区域产生的恶臭气体通过抽风系统送至焚烧炉焚烧处理;焚烧废气采用 SNCR 脱硝+半干法脱酸+干法脱酸+活性炭吸附+布袋除尘+SCR 脱硝设施处理,达到《生活垃圾焚烧污染控制标准》(GB18485-2014)表 4 限值要求(其中氮氧化物执行 100 毫克/立方米限值要求)后通过 80 米排气筒高空排放。排气筒设置为多筒集束式,

并按规范要求设置采样孔和采样平台,焚烧废气排气筒应安装在线监控装置并与管理部门联网。

落实厨余垃圾处理、垃圾贮存、渗滤液处理及物料输送过程中的无组织排放废气防治措施。垃圾库应设置活性炭吸附除臭应急设施,生活垃圾预处理车间、厨余垃圾预处理车间、卸料大厅、垃圾库、渗滤液处理站产臭单元应保持密闭和微负压状态,垃圾运输栈桥应采取全密闭设计,确保厂界和厂区内无组织排放污染物分别满足《恶臭污染物排放标准》(GB14554-1993)、《大气污染物综合排放标准》(GB16297-1996)。

- (四)落实地下水和土壤污染防治措施,按照规范要求对厂区地面进行分区 防渗处理,加强各类设施及管线日常巡查,避免对地下水、土壤环境产生不利影响;按《报告书》要求定期组织开展地下水、土壤环境质量的跟踪监测工作。
- (五)优先选用低噪声设备,对噪声源合理布局并采取隔音、消声等有效降噪措施,落实《报告书》提出的声屏障建设要求,确保厂界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)相关标准要求。
- (六)项目应按"资源化、减量化、无害化"处置原则,落实《报告书》提出的各类固体废物的分类收集、处置措施。按照环保、安全有关规范要求建设飞灰固化物暂存场所及危险废物暂存场所。项目运行产生的飞灰先经固化稳定化处置,满足《生活垃圾填埋场污染控制标准》(GB16889-2008)有关要求后外运至飞灰填埋场或生活垃圾填埋场专区填埋;落实危险废物转移联单制度,废矿物油、废布袋、废蓄电池、脱硝系统废催化剂、化验室废试剂等危险废物分类收集暂存后定期交有资质的单位进行妥善处置;其它固体废物应采取入炉焚烧或综合利用等方式妥善处置。

四、加强环境风险防控,严格落实《报告书》提出的各项风险防范措施和事故水池、储罐围堰、消防、自动报警、应急监控等设施设备。规范危险化学品和危险废物暂存及运输管理,严防泄漏、火灾、爆炸事故发生。结合本项目建设内容完善你公司环境风险应急预案,并实现与相关部门突发环境事件应急预案的有效衔接。加强安全事故防范及应急管理,定期开展环境安全隐患排查,组织环境应急培训和演练,提升风险防控和事故应急处置能力,切实防范环境污染事件发生。

五、项目应按要求设置 300 米环境防护距离,你公司应配合相关部门落实规划控制要求,在环境防护距离内不得建设居民住宅、学校、医院等环境敏感建筑。

六、项目投入使用后,你公司新增的化学需氧量、氨氮排放总量应分别控制在 17.5 吨/年、1.75 吨/年以内,其他主要污染物排放总量不得超过我局核定下达的总量控制指标。其中新增化学需氧量、氨氮排污权应通过排污权交易获得。

七、加强运行管理,减少垃圾运输、卸料过程恶臭气体无组织排放。

八、按照信息公开要求,加强监测和信息公开。

项目实施过程中应严格执行环保设施与主体工程同时设计.同时施工、同时投产使用的环境保护"三同时"制度,将环境保护设施建设纳入施工合同,保证环境保护设施建设进度和资金,全面落实《报告书》提出的各项污染防治措施。项目竣工后,你公司应依法开展建设项目竣工环保验收,编制验收报告并依法向社会公开,经验收合格后项目方可正式投入运行。项目建设及运营期间的环境监督检查工作由武汉市生态环境保护综合执法支队、武汉市生态环境局江夏区分局负责。若本批复自生效之日起5年后项目方开工建设,其环境影响评价文件应报经我局重新审核;如项目性质、规模、地点和污染防治措施发生重大变动,应重新报批环境影响评价文件。

## 5.2.2 《环评变更报告》批复

《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预 处理及环保提标改造(炉排炉改造)项目环评变更有关意见的复函》,具体内容 如下:

武汉市绿色环保能源有限公司:

你单位报送的《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及 环保提标改造(炉排炉改造)项目变动情况分析说明》(以下简称《说明》)已 收悉。经研究,现提出意见如下:

一、我局于 2021 年 9 月批复了《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书》(以下简称《报告书》),该项目包含城市生活垃圾分类资源化预处理、城市生活垃圾焚烧发电环保提标改造、长山口厨余垃圾焚烧协同处理工程等 3 个部分。项目建成

- 后,全厂生活垃圾焚烧处理能力保持 2000 吨/日不变,新增生活垃圾预处理能力 2600 吨/日、厨余垃圾预处理能力 500 吨/日。
- 二、为统筹后续建设需求,你公司拟对项目原总平面布置进行优化,将项目建设内容全部调整至扩建厂区,现有厂区已有布局维持不变。项目变动后,处理工艺、生活垃圾焚烧处理能力、生活垃圾预处理能力、厨余垃圾预处理能力、配套环保设施等均不发生变化,与原环评一致。根据《说明》分析结论以及专家评估结论,本次变动不构成重大变动,你公司按照《关于印发环评管理中部分行业建设项目重大变动清单的通知》(环办(2015)52号)规定,纳入竣工环境保护验收管理。
- 三、项目变动后,你公司应严格落实《报告书》及环评批复、《说明》有关 要求,加强建设、运营期间环境管理,确保各项污染物稳定达标排放,严格控制 项目对周边环境的不利影响。

# 6、验收监测评价标准

根据项目所在地的环境功能区划、环境影响评价及环评批复中提出的评价标准确定本次验收监测评价标准。

# 6.1 环境质量标准

### 6.1.1 环境空气质量标准

项目所处区域环境空气质量执行《环境空气质量标准》(GB3095-2012)二级标准: NH3、H2S、HC1 执行《环境影响评价技术导则大气环境》(HJ2.2-2018)附录 D 其他污染物空气质量浓度参考限值: Hg、Cd 参照执行《环境空气质量标准》(GB3095-2012)附录 A 中二级标准参考浓度限值: Pb 参照执行《环境空气质量标准》(GB3095-2012)表 2 环境空气污染物其他项目浓度限值; 二噁英参照执行日本年均浓度标准(年均值 0.6pgTEQ/m)。

标准限值 类别 类别 备注 标准名称 参数名称 浓度限值 年平均 0.06mg/m³ 二氧化硫 24 小时平均 0.15mg/m³  $(SO_2)$ 1 小时平均 0.50mg/m³ 年平均 0.04mg/m³ 二氧化氮 24 小时平均 0.08mg/m³  $(NO_2)$ 1 小时平均 0.20mg/m³ 《环境空气质量标准》 二级 年平均 0.07mg/m³ 可吸入颗粒物 项目所 环境 (GB3095-2012) 标准 空气  $(PM_{10})$ 在区域 24 小时平均 0.15mg/m³ 年平均 0.2mg/m³ **TSP** 24 小时平均 0.3mg/m³ 年平均 5×10-4mg/m³ 铅(Pb) 季平均 1×10⁻³mg/m³ 汞 (Hg) 年平均 5×10-4mg/m³ 日本年均浓度标准 二噁英  $0.6pgTEQ/m^3$ 

表6.1-1 环境空气质量执行标准一览表

### 6.1.2 地表水环境质量执行标准

长江金口污水处理厂断面水质执行执行《地表水环境质量标准》 (GB3838-2002) III类标准。

标准限值 类别 类别 备注 标准名称 参数名称 浓度限值 pH 值(无量纲)  $6 \sim 9$ 溶解氧  $\geq 5 mg/L$ 高锰酸盐指数 ≤6mg/L 化学需氧量(COD)  $\leq 20 \text{mg/L}$ 五日生化需氧量(BOD5)  $\leq$ 4mg/L 氨氮(NH3-N)  $\leq 1.0 \text{mg/L}$ 总磷(以P计)  $\leq 0.2 \text{mg/L}$ 总氮(湖、库,以N计)  $\leq 1.0 \text{mg/L}$ 铜  $\leq 1.0 \text{mg/L}$ 锌  $\leq$  1.0mg/L 长江金 氟化物(以 F-计)  $\leq$  1.0mg/L 地表 《地表水环境质量标 口污水 III类 硒  $\leq 0.01 \text{mg/L}$ 处理厂 水 准》(GB3838-2002) 砷  $\leq$  0.05mg/L 断面 汞  $\leq$  0.0001mg/L 镉  $\leq$  0.005mg/L 铬(六价)  $\leq 0.05$ mg/L 铅  $\leq 0.05 \text{mg/L}$ 氰化物  $\leq$  0.2mg/L 挥发酚  $\leq 0.005 \text{mg/L}$ 石油类  $\leq$  0.05mg/L 阴离子表面活性剂  $\leq 0.2 \text{mg/L}$ 硫化物  $\leq$  0.2mg/L 粪大肠菌群(个/L) ≤10000

表6.1-2 地表水环境质量执行标准一览表

### 6.1.3 声环境执行标准

(GB3096-2008)

境

本项目区域环境噪声执行《声环境质量标准》(GB3096-2008)2类标准。

标准限值 类别 标准名称 类别 参数名称 浓度限值 声环 《声环境质量标准》 等效连续A声级 昼间 60dB(A) 项目所

2 类

表6.1-3 声环境质量执行标准一览表

(Leq)

在区域

夜间 50dB (A)

备注

# 6.1.4 土壤

项目厂界内土壤执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)第二类用地筛选值标准,厂界外农用地敏感目标执行《土壤环境质量 农用地土壤污染风险管控标准》(GB 15618-2018)标准。

表 6.1-4 建设用地土壤污染风险筛选值和管制值(基本项目)单位: mg/kg

	》:	CAC 40 日	筛片	 选值	管制	 削值
序号	污染物项目	CAS 编号	第一类用地	第二类用地	第一类用地	第二类用地
重金属	和无机物					
1	砷	7440-38-2	20①	60①	120	140
2	镉	7440-43-9	20	65	47	172
3	铬 (六价)	18540-29-9	3.0	5.7	30	78
4	铜	7440-50-8	2000	18000	8000	36000
5	铅	7439-92-1	400	800	800	2500
6	汞	7439-97-6	8	38	33	82
7	镍	7440-02-0	150	900	600	2000
挥发性	有机物	•				
8	四氯化碳	56-23-5	0.9	2.8	9	36
9	氯仿	67-66-3	0.3	0.9	5	10
10	氯甲烷	74-87-3	12	37	21	120
11	1,1-二氯乙烷	75-34-3	3	9	20	100
12	1,2-二氯乙烷	107-06-2	0.52	5	6	21
13	1,1-二氯乙烯	75-35-4	12	66	40	200
14	顺-1,2-二氯乙烯	156-59-2	66	596	200	2000
15	反-1,2-二氯乙烯	156-60-5	10	54	31	163
16	二氯甲烷	75-09-2	94	616	300	2000
17	1,2-二氯丙烷	78-87-5	1	5	5	47
18	1,1,1,2-四氯乙烷	630-20-6	2.6	10	26	100
19	1,1,2,2-四氯乙烷	79-34-5	1.6	6.8	14	50
20	四氯乙烯	127-18-4	11	53	34	183
21	1,1,1-三氯乙烷	71-55-6	701	840	840	840
22	1,1,2-三氯乙烷	79-00-5	0.6	2.8	5	15
23	三氯乙烯	79-01-6	0.7	2.8	7	20
24	1,2,3-三氯丙烷	96-18-4	0.05	0.5	0.5	5
25	氯乙烯	75-01-4	0.12	0.43	1.2	4.3
26	苯	71-43-2	1	4	10	40
27	氯苯	108-90-7	68	270	200	1000
28	1,2-二氯苯	95-50-1	560	560	560	560

	\=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		筛光	 选值	管制值	
序号 	污染物项目	CAS 编号	第一类用地	第二类用地	第一类用地	第二类用地
29	1,4-二氯苯	106-46-7	5.6	20	56	200
30	乙苯	100-41-4	7.2	28	72	280
31	苯乙烯	100-42-5	1290	1290	1290	1290
32	甲苯	108-88-3	1200	1200	1200	1200
33	间二甲苯+对二甲苯	108-38-3, 106-42-3	163	570	500	570
34	邻二甲苯	95-47-6	222	640	640	640
半挥发	性有机物					
35	硝基苯	98-95-3	34	76	190	760
36	苯胺	62-53-3	92	260	211	663
37	2-氯酚	95-57-8	250	2256	500	4500
38	苯并[a]蒽	56-55-3	5.5	15	55	151
39	苯并[a]芘	50-32-8	0.55	1.5	5.5	15
40	苯并[b]荧蒽	205-99-2	5.5	15	55	151
41	苯并[k]荧蒽	207-08-9	55	151	550	1500
42	崫	218-01-9	490	1293	4900	12900
43	二苯并[a, h]蒽	53-70-3	0.55	1.5	5.5	15
44	茚并[1,2,3-cd]芘	193-39-5	5.5	15	55	151
45	萘	91-20-3	25	70	255	700
其他项						
46	石油烃(C10~C40)	-	826	4500	5000	9000

注:①具体地块土壤中污染物检测含量超过筛选值,但等于或者低于土壤环境背景值水平的,不纳入污染地块管理。土壤环境背景值可参见附录 A。

表6.1-5 土壤环境质量执行标准 [单位: mg/kg]

<del></del> 序号	运流体			风险筛选值			
<u>т</u>	75条件	勿坝日	pH≤5.5	5.5 <ph≤6.5< th=""><th>4.5<ph≤7.5< th=""><th>pH&gt;7.5</th></ph≤7.5<></th></ph≤6.5<>	4.5 <ph≤7.5< th=""><th>pH&gt;7.5</th></ph≤7.5<>	pH>7.5	
1	镉	水田	0.3	0.4	0.6	0.8	
1	押	其他	0.3	0.3	0.3	0.6	
2	汞	水田	0.5	0.5	0.6	1.0	
	) /K	其他	1.3	1.8	2.4	3.4	
3	砷	水田	30	30	25	20	
<i>3</i>	7P	其他	40	40	30	25	
4	     铅	水田	80	100	140	240	
4	70	其他	70	90	120	170	
5	校	水田	250	250	300	350	
5	铬	其他	150	150	200	250	

<del></del> 序号	污染物项目		风险筛选值				
一一一			pH≤5.5	5.5 <ph≤6.5< th=""><th>4.5<ph≤7.5< th=""><th>pH&gt;7.5</th></ph≤7.5<></th></ph≤6.5<>	4.5 <ph≤7.5< th=""><th>pH&gt;7.5</th></ph≤7.5<>	pH>7.5	
-	铜	水田	150	150	200	200	
6	刊	其他	50	50	100	100	
7	镍		60	70	100	190	
8	锌		200	200	250	300	

## 6.1.5 地下水

区域地下水执行《地下水质量标准》(GB/T14848-2017)III类标准。

标准限值 类别 标准名称 类别 备注 参数名称 浓度限值 pН 6.5~8.5 耗氧量  $\leq$  3.0mg/L 氨氮  $\leq$  0.5 mg/L 铜  $\leq$  1.0mg/L 锌  $\leq$  1.0mg/L 汞 地下 《地下水质量标准》  $\leq 0.001 \text{mg/L}$ 项目区 III类 水 (GB/T14848-2017) 铬(六价)  $\leq$  0.05mg/L 域 铅  $\leq$  0. 01mg/L 亚硝酸盐  $\leq$  1.00mg/L 硝酸盐  $\leq 20 \text{mg/L}$ 氟化物  $\leq 1.0 \text{mg/L}$ 硫酸盐  $\leq$ 250mg/L

表6.1-6 地下水环境质量执行标准一览表

# 6.2 污染物排放执行标准

# 6.2.1 废气污染物排放标准

本项目烟气污染物排放执行《生活垃圾焚烧污染控制标准》(GB 18485-2014) (NOx执行《武汉市人民政府关于印发武汉市 2020 年大气污染防治工作方案的通知》相关要求),恶臭污染物排放执行《恶臭污染物排放标准》(GB14554-93) 新扩改建二级厂界标准值,颗粒物无组织排放执行《大气污染物综合排放标准》(GB16297-1996)表2新建污染源标准。

要素分类	标准名称	适用 类别	参数名称	单位	限值	评价 对象	
			颗粒物	mg/m ³	30(1h 均值), 20(24h 均值)		
			二氧化硫	mg/m ³	100 (1h 均值), 80 (24h 均值)		
			氯化氢	mg/m ³	60(1h 均值), 50(24h 均值)		
	《生活垃圾焚烧		汞及其化合物(以Hg 计)	mg/m ³	0.05 (测定均值)		
	《生石垃圾灰烷 污染控制标准》 (GB18485-2014)	表4	镉、铊及其化合物(以 Cd+Tl 计)	mg/m ³	0.1 (测定均值)	焚烧炉	
	(UB10403-2014)		锑、砷、铅、铬、钴、铜、 锰、镍及其化合物(以 Sb+As+Pb+Cr+Co+Cu+M n+Ni 计)	mg/m ³	1.0(测定均值)	烟气排 放口 DA0010 、DA009	
废气			二噁英类	ng TEQ/m ³	0.1 (测定均值)		
			一氧化碳	mg/m ³	100(1h 均值), 80(24h 均值)		
	《武汉市人民政府关于印发武汉市2020年大气污染防治工作方案的通知》	垃圾焚 烧发电 企业	氮氧化物	mg/m³	100		
	《恶臭污染物排	表1中	氨	mg/m ³	1.5	厂界无	
	放标准》	二级新	硫化氢	mg/m ³	0.06	组织恶	
	(GB14554-93)	扩改建	臭气浓度	无量纲	20	臭气体	
	《大气污染物综 合排放标准》 (GB16297-1996)	表2	颗粒物	mg/m ³	1	厂界无 组织颗 粒物	

表 6.2-1 废气污染物排放标准一览表

### 6.2.2 废水污染物排放标准

本项目各类废(污)水经处理后尽量回用,无法回用的接入市政污水管网,进入金口污水处理厂。根据武汉江夏经济开发区管委会出具的《关于接收处理武汉绿色环保能源有限公司纳管污水的情况说明》,接入市政污水管网的水质第一类污染物执行《生活垃圾填埋场污染控制标准》(GB16889-2008)表2标准,第二类污染物执行《污水综合排放标准》(GB8978-1996)三级标准(其中氨氮、总氮、总磷参照执行《污水排入城镇下水道水质标准》(GB/T31962-2015)A级标准)。

要素 分类	标准名称	适用 类别	参数名称	单位	限值	评价 对象
	《生活垃圾填埋 场污染控制标准》 (GB16889-2024)	表2	总汞	mg/L	0.001	<ul><li>废水总</li><li>排口</li><li>DW003、</li><li>渗滤液</li><li>处理站</li><li>排口</li><li>DW004</li></ul>
			总镉	mg/L	0.01	
			总铬	mg/L	0.1	
			六价铬	mg/L	0.05	
			总砷	mg/L	0.1	
废水			总铅	mg/L	0.1	
			粪大肠菌群数	个/L	10000	
	《污水综合排放 标准》 (GB8978-1996)	表4三	рН	无量纲	6~9	
			COD	mg/L	500	
			BOD ₅	mg/L	300	
			SS	mg/L	400	
			动植物油	mg/L	100	
	《污水排入城镇	表1中 A级标	总氮*	mg/L	70	
	下水道水质标准》		NH ₃ -N*	mg/L	45	
	(GB/T31962-201 5)	准	TP*	mg/L	8	

表 6.2-2 废水污染物排放标准一览表

备注:①本项目废水按武汉江夏经济开发区管委会出具的《关于接收处理武汉绿色环保能源有限公司纳管污水的情况说明》执行;②总氮、NH₃-N、TP参照执行《污水排入城镇下水道水质标准》(GB/T31962-2015)表1中A级标准。

# 6.2.3 厂界噪声排放执行标准

本项目厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008) 2 类标准。具体执行标准限值详见表 6.2-3。

类别	标准名称	类别	标准限值		———— 备注	
<b>火</b> 剂	你任何你	<b>火</b> 剂	参数名称	浓度限值	<b>一</b>	
噪声	《工业企业厂界环境噪 声排放标准》 (GB12348-2008)	2 类	等效连续A声级 (Leq)	昼间 60dB(A) 夜间 50dB(A)	厂界外 1m 处	

表6.2-3 厂界噪声执行标准一览表

# 6.2.4 固体废物

项目飞灰在厂内固化后由武汉凯路运输有限公司外运青山北湖飞灰填埋场填埋,执行《生活垃圾填埋场污染控制标准》(GB 16889-2024)。

要素 适用 评价 标准名称 参数名称 单位 限值 分类 类别 对象 总汞 mg/L 0.05 总铜 40 mg/L 总锌 100 mg/L 总铅 mg/L 0.25 总镉 0.15 mg/L 总铍 0.02 mg/L 《生活垃圾填埋场污染 飞灰固 表1 控制标准》 总钡 mg/L 25 化车间 (GB16889-2024) 固化物 固体 总镍 0.5 mg/L 废物 总砷 mg/L0.3 总铬 4.5 mg/L 六价铬 1.5 mg/L 0.1 总硒 mg/L 6.3a) 二噁英类 3 μg TEQ/kg 《生活垃圾焚烧污染物 控制标准》(GB 表1 热灼减率 % 5 炉渣 18485-2014)

表 6.2-4 固体废物执行标准一览表

# 6.3 总量控制

根据企业排污许可、本期项目环境影响报告书及其批复、武汉市生态环境局《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目污染物总量指标的审核意见》(武环函〔2021〕88号),本工程实施后新增水污染物总量控制指标 COD17.5t/a、氨氮 1.75t/a,总量指标替代来源为 2021 年黄家湖污水处理厂扩建项目形成的削减量;本工程实施后不新增大气污染物总量控制指标,全厂许可排放总量为二氧化硫: 150t/a,氮氧化物: 903.34t/a,烟粉尘(颗粒物): 76.57t/a。

# 7、验收监测工作内容

# 7.1 环保设施调试效果

通过对各类污染物排放及各类污染物治理设施处理效率的监测,来说明环境保护设施调试运行效果,具体监测内容如下:

### 7.1.1 废气监测

有组织排放废气监测内容见表 7.1-1; 无组织排放废气监测内容见表 7.1-2。

类别	监测点位置	编号	监测因子	监测频次
有组 织废 气	5#炉排放口 DA010	©1	颗粒物、二氧化硫、氮氧化物、氯化氢、一氧化碳、汞及其化合物、镉、铊及其化合物(以 Cd+Tl 计);锑、砷、铅、铬、钴、铜、锰、镍及其化合物(以 Sb+As+Pb+Cr+Co+Cu+Mn+Ni 计)、二噁英	3 次/天, 监测 2 天
	6#炉排放口 DA009	©2		

表 7.1-1 废气有组织排放监测一览表

类别	监测点位置	编号	监测因子	监测频次
无组 织废 气	厂界上风向 G1	<b>O</b> 1	- 颗粒物、氨气、硫化氢、臭气浓度	
	厂界下风向 G2	<b>O</b> 2		3 次/天,监测 2 天
	厂界下风向 G3	<b>○</b> 3		
	厂界下风向 G4	<b>O</b> 4		
	与采样同步进行			

# 7.1.2 废水监测

废水监测内容见表 7.1-3。

表 7.1-3 废水监测内容一览表

类别	监测点位	编号	监测因子	监测频次
废水	渗滤液处理站 排口 DW004	<b>★</b> 1	pH 值、悬浮物、化学需氧量、五日生化需 氧量、氨氮、总磷、总氮、动植物油、总 汞、总镉、总铬、六价铬、总砷、总铅	3 次/天,监测 2 天
	废水总排口 DW003	<b>★</b> 2	pH 值、悬浮物、化学需氧量、五日生化需 氧量、氨氮、总磷、总氮、动植物油、总 汞、总镉、总铬、六价铬、总砷、总铅	3 次/天,监测 2 天

### 7.1.3 厂界噪声监测

噪声监测内容见表 7.1-4。

表 7.1-4 噪声监测内容一览表

类别	监测点位置	编号	监测因子	监测频次
	东侧厂界外 1 米处 N1	<b>1</b>		
	东侧厂界外 1 米处 N2	<b>A</b> 2		
	南侧厂界外 1 米处 N3	<b>▲</b> 3		昼间、夜间各监 测 1 次,连续监 测 2 天
厂界	南侧厂界外 1 米处 N4	<b>4</b>	连续等效 A 声级	
噪声	西侧厂界外 1 米处 N5	<b>\$</b> 5	上线等双 A 户级	
	西侧厂界外 1 米处 N6	<b>A</b> 6		
	北侧厂界外 1 米处 N7	<b>^</b> 7		
	北侧厂界外 1 米处 N8	▲8		

#### 7.1.4 固体废物监测

固化飞灰浸出液污染物监测内容见表 7.1-5。

表 7.1-5 固体废物监测内容一览表

类别	监测点位置	编号	监测因子	监测频次	备注
固废	飞灰固化车 间固化物	<b>1</b>	二噁英、含水率、浸出液的汞、铜、铅、锌、镉、铍、钡、镍、砷、总铬、六价铬、硒、pH、	1 个样品的混合样/天,连续采样 2 天	养护状态 下的飞灰 浸出液
	渣库	<b>2</b>	焚烧炉渣热灼减率	1 个样品的混合样/ 天,连续采样 2 天	炉渣

## 7.2 环境质量监测

## 7.2.1 环境空气质量现状监测

环境空气质量现状监测内容见表 7.2-1。

表 7.2-1 环境空气现状监测项目及频次一览表

序 号	监测点位	监测指标	监测频次	相对厂界最 近距离/m
1	张家岭	汞及其化合物(以 Hg 计)、 镉、铊、锑、砷、铅、铬、	$NH_3$ 、 $H_2S$ 、甲硫醇、 $HCl$ 监测小时值; 汞及其化合物(以 $Hg$ 计)、	NE, 700
2	双凤魏	钴、铜、锰、镍、TSP、	镉、铊、锑、砷、铅、铬、钴、铜、	SW, 900
3	尖山曹	NH ₃ 、H ₂ S、臭气浓度、甲 硫醇、二噁英类、HCl	锰、镍、TSP、臭气浓度、二噁英 监测日均值。连续监测 3 天	S, 900

### 7.2.2 地下水环境质量监测

地下水监测内容见表 7.2-2。

表 7.2-2 地下水监测项目及频次一览表

序号	监测点位	坐标	监测指标	监测频次
1	厂区地下水上游	114°13'20.47"E		
	, = = , , , = , , ,	30°21'21.70"N	pH、总硬度、溶解性总固体、	
2	   厂区地下水下游	114°13'37.24"E	高锰酸盐指数、石油类、硫酸	
		30°21'23.12" N	盐、氯化物、铁、锰、钠、挥	   连续采样 2
3	   厂区地下水侧向	114°13'33.88"E	发酚、耗氧量、亚硝酸盐、硝	天,2次/
		30°21'18.72"N	酸盐、氨氮(以 N 计)、氟	八,2 切/   点/天
4	   垃圾库边界	114°13'25.09"E	化物、氰化物、汞、砷、镉、	
	垃圾库边外	30°21'19.25" N	格(六价)、铅、总大肠菌群、	
5	   渗滤液处理站下游	114°13'21.21"E	细菌总数	
		30°21'16.60"N		

## 7.2.3 土壤环境质量监测

土壤监测内容见表 7.2-3。

表 7.2-3 土壤监测项目及频次一览表

序号	监测点位	监测指标	监测频次	备注
1	垃圾库旁	pH 、汞、铬(六价)、	采样 1 次,建设用地	
2	渗滤液处理站附近	铜、铅、砷、镉、镍、	采样 1 次,建设用地	取 0~0.5m 表层
3	张家岭农用地	锰、钴、铊、锑、二噁	采样1次,农用地	土
4	双凤魏农用地	英	采样1次,农用地	

## 7.3 在线比对监测

烟气在线比对监测内容见表 7.3-1。

表 7.3-1 烟气在线比对监测项目及频次一览表

序号	监测点位	对比项目	监测频次	对比方法
1	2台焚烧炉烟	烟气中一氧化碳、二氧 化硫、氮氧化物、氯化 氢、含氧量	至少获取9个数据对	要求系统给出分 钟测试值,取参 比测试时间段系
1	气排放在线监 测系统	颗粒物、烟气温度、流 速、湿度	至少获取 5 个同时段测试断面值数据对	统打印记录平均 值,与排放口监 测值对比

# 8、质量保证及质量控制

## 8.1 监测分析方法

监测分析方法及仪器情况见表 8.1-1

表 8.1-1 监测方法一览表

-	 检测项目	检测仪器	分析方法	方法来源	检出限
1	区例·火 日	型号、名称、编号	分析力伝	刀伝术源	似山吹
	рН	SX620 便携式 pH 计 WHHJ/YS-04-067	电极法	НЈ 1147-2020	/
	悬浮物	AR224CN 电子天平 WHHJ/YS-01-005	重量法	GB 11901-89	4 mg/L
	化学需氧 量	KN-COD11 恒温消解仪 WHHJ/YS-02-053	重铬酸盐法	НЈ 828-2017	4 mg/L
	五日生化需氧量	生化培养箱 SPX-250B-Z WHHJ/YS-02-020	稀释与接种法	НЈ 505-2009	0.5 mg/L
	总氮	UV-1800SPC 紫外可见 分光光度计 WHHJ/YS-01-012	碱性过硫酸钾消 解紫外分光光度 法	НЈ 636-2012	0.05 mg/L
	氨氮	V-1100 可见分光光度计 (光谱仪) WHHJ/YS-01-027	纳氏试剂分光光 度法	НЈ 535-2009	0.025 mg/L
废 水	总磷	V-1100 可见分光光度计 (光谱仪) WHHJ/YS-01-027	钼酸铵分光光度 法	GB 11893-89	0.01 mg/L
	动植物油	MAI-100G 红外测油仪 WHHJ/YS-01-025	红外分光光度法	НЈ 637-2018	0.06 mg/L
	总汞	AFS-922 原子荧光光度计 (11800124020762)	原子荧光法	НЈ 694-2014	4×10 ⁻⁵ mg/L
	总镉	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 700-2014	5×10 ⁻⁵ mg/L
	总铬	V-1100 可见分光光度计 (光谱仪) WHHJ/YS-01-027	高锰酸钾氧化-二 苯碳酰二肼分光 光度法	GB 7466-87	0.004 mg/L
	六价铬	V-1100 可见分光光度计 (光谱仪) WHHJ/YS-01-027	二苯碳酰二肼分 光光度法	GB 7467-87	0.004 mg/L

	사 개 중도 다	检测仪器	/\ LT \ \ L		1A 11 MH
	检测项目	型号、名称、编号	分析方法	方法来源	检出限
	总砷	AFS-8530 原子荧光光度计 (11800220110041)	原子荧光法	НЈ 694-2014	3×10 ⁻⁴ mg/L
	总铅	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 700-2014	9×10 ⁻⁵ mg/L
	粪大肠菌 群	HPX-9272MBE 电热恒温培养箱 WHHJ/YS-02-021	酶底物法	НЈ 1001-2018	10 MPN/L
	рН	SX620 便携式 pH 计 WHHJ/YS-04-067	电极法	НЈ 1147-2020	/
	氨氮	V-1100 可见分光光度计 (光谱仪) WHHJ/YS-01-027	纳氏试剂分光光 度法	НЈ 535-2009	0.025 mg/L
	硝酸盐	UV-1800SPC 紫外可见 分光光度计 WHHJ/YS-01-012	紫外分光光度法	HJ/T 346-2007	0.08 mg/L
	亚硝酸盐	V-1100 可见分光光度计 (光谱仪) WHHJ/YS-01-027	分光光度法	GB 7493-87	0.003 mg/L
	挥发酚	UV-1800SPC 紫外可见 分光光度计 WHHJ/YS-01-012	4-氨基安替比林 分光光度法	НЈ 503-2009	0.0003 mg/L
地 下 水	氰化物	UV-1800SPC 紫外可见 分光光度计 WHHJ/YS-01-012	异烟酸-吡唑啉酮 分光光度法	НЈ 484-2009	0.004 mg/L
	砷	AFS-8530 原子荧光光度计 (11800220110052)	原子荧光法	НЈ 694-2014	3×10 ⁻⁴ mg/L
	汞	AFS-922 原子荧光光度计 (11800124020762)	原子荧光法	НЈ 694-2014	4×10 ⁻⁵ mg/L
	六价铬	V-1100 可见分光光度计 (光谱仪) WHHJ/YS-01-027	二苯碳酰二肼 分光光度法	GB 7467-87	0.004 mg/L
	总硬度	滴定管	EDTA 滴定法	GB 7477-87	0.05 mmol/L
	铅	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 700-2014	9×10 ⁻⁵ mg/L

	人》前五年 口	检测仪器	<b>八+□→</b> >+	<del></del>	4A.11.17B
1	检测项目	型号、名称、编号	分析方法	方法来源	检出限
	镉	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 700-2014	5×10 ⁻⁵ mg/L
	铁	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 发射光谱法	НЈ 776-2015	0.02 mg/L
	锰	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 发射光谱法	НЈ 776-2015	0.004 mg/L
	钠	ICP 电感耦合等离子发射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 发射光谱法	НЈ 776-2015	0.12 mg/L
	溶解性总 固体	AR224CN 电子天平 WHHJ/YS-01-004	称量法	GB/T 5750.4-2023	/
	高锰酸盐 指数	HH-6A 智能数显恒温水 浴锅 WHHJ/YS-02-061	酸性法	GB 11892-89	0.5 mg/L
	石油类	UV-1800SPC 紫外可见 分光光度计 WHHJ/YS-01-012	紫外分光光度法	НЈ 970-2018	0.01 mg/L
	氟化物	YC-7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	НЈ 84-2016	0.006 mg/L
	硫酸盐	YC-7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	НЈ 84-2016	0.018 mg/L
	氯化物	YC-7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	НЈ 84-2016	0.007 mg/L
	总大肠菌 群	SPX-100B-Z 生化培养箱 WHHJ/YS-02-058	酶底物法	НЈ 1001-2018	10 MPN/L
	细菌总数	SPX-100B-Z 生化培养箱 WHHJ/YS-02-058	平皿计数法	НЈ 1000-2018	1 CFU/mL
	颗粒物	EX125ZH 电子天平 WHHJ/YS-01-024	重量法	НЈ 836-2017	1.0 mg/m ³
有	二氧化硫	MD1080 型烟尘烟气测 试仪 WHHJ/YS-04-100	定电位电解法	НЈ 57-2017	3 mg/m ³
组织	二氧化硫	MD1080 型烟尘烟气测 试仪 WHHJ/YS-04-099	定电位电解法	НЈ 57-2017	3 mg/m ³
次 废 气	氮氧化物	MD1080 型烟尘烟气测 试仪 WHHJ/YS-04-100	定电位电解法	НЈ 693-2014	3 mg/m ³
ų.	氮氧化物	MD1080 型烟尘烟气测 试仪 WHHJ/YS-04-099	定电位电解法	НЈ 693-2014	3 mg/m ³
	氯化氢	YC-7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	НЈ 549-2016	0.2 mg/m ³

₩	 ὰ测项目	检测仪器	八七十十	方法来源	松山阳	
	<b>[</b> 侧坝日	型号、名称、编号	分析方法	万法未源	检出限	
	一氧化碳	MD1080 型 烟尘烟气测 试仪 WHHJ/YS-04-099	定电位电解法	НЈ 973-2018	3 mg/m ³	
	一氧化碳	MD1080 型 烟尘烟气测 试仪 WHHJ/YS-04-100	定电位电解法	НЈ 973-2018	3 mg/m ³	
	汞及其化 合物	AFS-922 原子荧光光度计 (11800124020762)	原子荧光光度法	《空气和废气 监测分析方法》 (第四版增补 版)	/	
	镉	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	8×10 ⁻⁶ mg/m ³	
	铊	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	8×10 ⁻⁶ mg/m ³	
	锑	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	2×10 ⁻⁵ mg/m ³	
	砷	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	2×10 ⁻⁴ mg/m ³	
	铅	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	2×10-4 mg/m ³	
	铬	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	3×10 ⁻⁴ mg/m ³	
	钴	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	8×10 ⁻⁶ mg/m ³	
	铜	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	2×10 ⁻⁴ mg/m ³	
	锰	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	7×10 ⁻⁵ mg/m ³	
	镍	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	1×10 ⁻⁴ mg/m ³	
无组	颗粒物	EX125ZH 电子天平 WHHJ/YS-01-024	重量法	НЈ 1263-2022	0.007 mg/m ³	

		检测仪器	/\ LF-}\L	سام المال سام الاست	- LA - L- 1913	
<b>T</b>	<b>检测项目</b>	型号、名称、编号	分析方法	方法来源	<b>检出限</b>	
织废气	氨气	UV-1800SPC 紫外可见 分光光度计 WHHJ/YS-01-012	纳氏试剂分光光 度法	НЈ 533-2009	0.01 mg/m ³	
	硫化氢	V-1100 可见分光光度计 (光谱仪) WHHJ/YS-01-027	亚甲基蓝分光光 度法	《空气和废气 监测分析方法》 (第四版增补 版)	0.001 mg/m ³	
	臭气浓度	/	三点比较式臭袋 法	НЈ 1262-2022	/	
	рН	PHSJ-4F pH 计 (11800924010742)	电位法	НЈ 962-2018	/	
	汞	DMA-80 测汞仪 (11800520110047)	分光光度法	НЈ 923-2017	0.0002 mg/kg	
	六价铬	PinAAcle 900F 原子吸 收光谱仪 (11800122080583)	火焰原子分光光 度法	НЈ 1082-2019	0.5 mg/kg	
	铜	PinAAcle 900F 原子吸 收光谱仪 (11800122080583)	火焰原子分光光 度法	НЈ491-2019	1 mg/kg	
	铅	PinAAcle 900F 原子吸 收光谱仪 (11800122080583)	火焰原子分光光 度法	НЈ491-2019	10 mg/kg	
土	镍	PinAAcle 900F 原子吸 收光谱仪 (11800122080583)	火焰原子分光光 度法	НЈ491-2019	3 mg/kg	
壤	镉	AA900T 原子吸收光谱 仪(11800120110053)	石墨炉原子吸收 分光光度法	GB/T 17141-1997	0.01 mg/kg	
	砷	AFS-8530 原子荧光光度计 (11800220110052)	原子荧光法	НЈ 680-2013	0.01 mg/kg	
	锰	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 803-2016	0.4 mg/kg	
	钴	ICP-MS 电感耦合等离子 体质谱仪 1000G (11800220110041)	电感耦合等离子 体质谱法	НЈ 803-2016	0.04 mg/kg	
	铊	AA900T 原子吸收光谱 仪(11800120110053)	石墨炉原子吸收 分光光度法	НЈ 1082-2019	0.1 mg/kg	
	锑	AFS-8530 原子荧光光度计 (11800220110052)	原子荧光法	НЈ 680-2013	0.01 mg/kg	

	<b>火湖電</b>	检测仪器	八七十分	<del></del>	<b>₩</b>
1	检测项目	型号、名称、编号	分析方法	方法来源	检出限
	含水率	HC311 电子天平 (11800922080565)	醋酸缓冲溶液法	НЈ/Т 300-2007	/
	热灼减率	HC311 电子天平 (11800922080565)	重量法	НЈ 1024-2019	0.2 %
	汞	AFS-922 原子荧光光度计 (11800124020762)	原子荧光法	НЈ 702-2014	0.00002 mg/L
	硒	AFS-922 原子荧光光度计 (11800124020762)	原子荧光法	НЈ 702-2014	0.00010 mg/L
	铜	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 体发射光谱法	НЈ 781-2016	0.01 mg/L
	铅	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 体发射光谱法	НЈ 781-2016	0.03 mg/L
固	锌	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 体发射光谱法	НЈ 781-2016	0.01 mg/L
体 废 物	镉	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 体发射光谱法	НЈ 781-2016	0.01 mg/L
	铍	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 体发射光谱法	НЈ 781-2016	0.004 mg/L
	钡	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 体发射光谱法	НЈ 781-2016	0.06 mg/L
	镍	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 体发射光谱法	НЈ 781-2016	0.02 mg/L
	总铬	ICP 电感耦合等离子发 射光谱仪 Avio 200 (11800220110042)	电感耦合等离子 体发射光谱法	НЈ 781-2016	0.02 mg/L
	砷	AFS-8530 原子荧光光度计 (11800220110052)	原子荧光法	НЈ 702-2014	0.00010 mg/L
	六价铬	V-5100B 紫外可见分光 光度计 (11800924060855)	二苯碳酰二肼分 光光度法	GB/T 15555.4-1995	0.004 mg/L

检测项目		检测仪器 型号、名称、编号	分析方法	方法来源	检出限
	pH PHSJ-4F pH 计 (11800924010742)		玻璃电极法	GB/T 15555.12-1995	/
噪声		AWA5688 型多功能声级 计 WHHJ/YS-04-034	工业企业厂界环 境噪声排放标准	GB 12348-2008	/

### 8.2 质量保证和质量控制

本次验收监测采样及样品分析均严格按照《环境水质监测质量保证手册(第四版)》、《环境空气监测质量保证手册》及《环境监测技术规范》等要求进行,实施全程序质量控制。

具体质控要求如下:

- ①参加本次环保验收监测人员,均经培训、考核并持有环境监测资格证书。
- ②监测过程严格按《环境监测技术规范》、《地表水和污水监测技术规范》 HJ 91-2002、《地下水环境监测技术规范》HJ/T 164-2004、《固定污染源废气监测技术规》HJ 397-2007、《大气污染物无组织排放监测技术导则》HJ/T 55-2000、《工业企业厂界环境噪声排放标准》GB 12348-2008、《土壤环境监测技术规范》HJT 166-2004 中有关规定进行,并实行全程序质量控制。
- ③现场采样时,主要生产设备及环保设施均正常运转,生产负荷符合验收监测的工况要求。
  - ④监测仪器经计量部门检定并在有效期内,并在采样前对采样器进行校准。
- ⑤水样采样、运输、保存、分析全过程严格按照《环境监测技术规范(水和废水部分)》和《环境水质监测质量保证手册(第四版)》规定执行,实验室分析过程中采取全程空白、平行样、加标回收等质控措施。。
- ⑥废气监测仪器均符合国家有关标准或技术要求,监测前对使用的仪器均进行浓度校准,按规定对废气测试仪进行现场检漏,采样和分析过程严格按照《固定源废气监测技术规范》HJ/T397-2007、《固定污染源质量保证和质量控制技术规范(试行)》HJ/T373-2007和《空气和废气监测分析方法(第四版)》进行。
  - ⑦声级计使用前后均进行校准。
  - ⑧监测数据及报告严格实行三级审核制度。

本次验收监测质量控制结果见表 8.2-1~表 8.2-10:

表 8.2-1 废水监测空白样及平行样分析结果

监测项目	全程序空白	检出限	评价	平行样品 测定浓度	平行双样相对偏差	平行双样 相对偏差 允许限值	评价	
复复	ND	0.025 mg/L	合格	0.030 mg/L \ 0.038 mg/L	11.8%	≤20%	合格	
氨氮	ND	0.025 mg/L	合格	0.052 mg/L \ 0.044 mg/L	8.3%	≤20%	合格	
化学需氧	ND	4 mg/L	合格	52.8 mg/L 、53.6 mg/L	0.8%	≤15%	合格	
量	ND	4 mg/L	合格	64.5 mg/L \ 64.5 mg/L	0	≤15%	合格	
五日生化	ND	0.5 mg/L	合格	12.17 mg/L、12.52 mg/L	1.4%	≤20%	合格	
需氧量	ND	0.5 mg/L	合格	14.74 mg/L、14.14 mg/L	2.1%	≤20%	合格	
当 / 信	ND	0.05 mg/L	合格	10.5 mg/L \ 10.6 mg/L	0.47%	≤5%	合格	
总氮	ND	0.05 mg/L	合格	10.4 mg/L 、10.4 mg/L	0	≤5%	合格	
—————————————————————————————————————	ND	0.01 mg/L	合格	0.056 mg/L \ 0.056 mg/L	0	≤10%	合格	
总磷	ND	0.01 mg/L	合格	0.058 mg/L \ 0.057 mg/L	0.9%	≤10%	合格	
—————————————————————————————————————	ND	0.004 mg/L	合格	ND(0.004),ND(0.004)	/	/	/	
总铬	ND	0.004 mg/L	合格	ND(0.004),ND(0.004)	/	/	/	
1人均	ND	0.004 mg/L	合格	ND(0.004),ND(0.004)	/	/	/	
六价铬	ND	0.004 mg/L	合格	ND(0.004),ND(0.004)	/	/	/	
二十十二 4/20 2/1-1	ND	0.06 mg/L	合格	0.14 mg/L 、 0.15 mg/L	3.4%	/	/	
动植物油	ND	0.06 mg/L	合格	0.14 mg/L 、 0.15 mg/L	3.4%	/	/	
总汞	ND	0.00004 mg/L	合格	ND (0.00004) , ND (0.00004)	/	/	/	
总砷	ND	0.0003 mg/L	合格	8.8 μg/L 、8.8 μg/L	0	≤20%	合格	
<b>丛</b> <i>上</i> 豆	ND	0.00005 mg/L	合格	0.33 μg/L、 0.34 μg/L	1.5%	≤20%	合格	
总镉	ND	0.00005 mg/L	合格	0.33 μg/L、 0.26 μg/L	11.9%	≤20%	合格	
总铅	ND	0.00009 mg/L	合格	1.92 μg/L、 1.94 μg/L	0.5%	≤20%	合格	
本扣	ND	0.00009 mg/L	合格	0.66 μg/L、 0.64 μg/L	1.5%	≤20%	合格	
备注	1、现场空白样测定值应小于方法检出限; 2、平行双样偏差依据《固定污染源监测质量保证与质量控制技术规范(试行)》 (HJ/T373-2007)中表1相关要求; 3、"ND"表示检测结果低于分析方法检出限。							

3、"ND"表示检测结果低于分析方法检出限。

表 8.1-2 废水监测加标回收分析结果

	加标回收分析							
检测项目	分析编号	回收率(%)	允许回收率(%)	结果评判				
总氮	空白加标	102	90~110	符合要求				
心炎	空白加标	102	90~110	符合要求				
氨氮	HJ25082001-1-26-1 加标	93.0	90~110	符合要求				
安し灸し	HJ25082001-2-26-1 加标	94.5	90~110	符合要求				
总磷	HJ25082001-1-26-1 加标	100	90~110	符合要求				
心物	HJ25082001-2-26-1 加标	100	90~110	符合要求				
动植物油	空白加标	95.6	75~138	符合要求				
幼恒初曲	空白加标	95.6	75~138	符合要求				
总铬	HJ25082001-1-26-1 加标	88.5	85~115	符合要求				
心坩	HJ25082001-2-26-1 加标	89.5	85~115	符合要求				
六价铬	HJ25082001-1-26-1 加标	105	85~115	符合要求				
ハ川墳	HJ25082001-2-26-1 加标	101	85~115	符合要求				
	空白加标	92.5	70~130	符合要求				
心地	空白加标	93.8	70~130	符合要求				
 总铅	空白加标	82.5	70~130	符合要求				
心扣	空白加标	86.2	70~130	符合要求				

表 8.1-3 地下水监测空白样及平行样分析结果

监测项目	全程序 空白	检出限	评价	平行样品测定浓度	平行双 样相对 偏差	平行双样 相对偏差 允许限值	评价
氨氮	ND	0.025 mg/L	合格	0.090 mg/L \ 0.096 mg/L	3.2%	≤20%	合格
安(炎)	ND	0.025 mg/L	合格	0.334 mg/L \ 0.356 mg/L	3.2%	≤20%	合格
一人从均	ND	0.004 mg/L	合格	ND (0.004) 、ND (0.004)	/	/	/
六价铬	ND	0.004 mg/L	合格	ND (0.004) 、ND (0.004)	/	/	/
734 邢台 十人	ND	0.08 mg/L	合格	1.60 mg/L、1.61 mg/L	0.3%	≤5%	合格
硝酸盐	ND	0.08 mg/L	合格	1.25 mg/L、1.26 mg/L	0.4%	≤5%	合格
正戏形北	ND	0.003 mg/L	合格	ND (0.003) 、ND (0.003)	/	/	/
亚硝酸盐	ND	0.003 mg/L	合格	0.027 mg/L、 0.027 mg/L	0	≤20%	合格
<b>按华</b>	ND	0.0003 mg/L	合格	ND (0.0003) 、ND (0.0003)	/	/	/
挥发酚	ND	0.0003 mg/L	合格	ND (0.0003) 、ND (0.0003)	/	/	/
复 A Min	ND	0.004 mg/L	合格	ND (0.004) 、ND (0.004)	/	/	/
氰化物	ND	0.004 mg/L	合格	ND (0.004) 、ND (0.004)	/	/	/
<b>工油米</b>	ND	0.01 mg/L	合格	ND (0.01) , ND (0.01)	/	/	/
石油类	ND	0.01 mg/L	合格	ND (0.01) , ND (0.01)	/	/	/
	ND	0.05 mmol/L	合格	282 mg/L、286 mg/L	0.7%	≤8%	合格
总硬度 	ND	0.05 mmol/L	合格	313 mg/L、314 mg/L	0.2%	≤8%	合格

监测项目	全程序 空白	检出限	评价	平行样品 测定浓度	平行双 样相对 偏差	平行双样 相对偏差 允许限值	评价
	ND	0.006 mg/L	合格	0.4596 mg/L \ 0.4733 mg/L	1.5%	≤10%	合格
<b>飛化初</b>	ND	0.006 mg/L	合格	0.5423 mg/L \ 0.5451 mg/L	0.3%	≤10%	合格
溶解性总	ND	/	合格	462 mg/L、472 mg/L	1.1%	/	/
固体	ND	/	合格	487 mg/L 、499 mg/L	1.2%	/	/
高锰酸盐	ND	0.5 mg/L	合格	$0.92 \text{ mg/L}$ $\sim 0.96 \text{ mg/L}$	2.1%	≤20%	合格
指数	ND	0.5 mg/L	合格	$0.92 \text{ mg/L}$ $\sim 0.88 \text{ mg/L}$	2.2%	≤20%	合格
硫酸盐	ND	0.018 mg/L	合格	152.9 mg/L、152.9 mg/L	0	≤10%	合格
圳政益	ND	0.018 mg/L	合格	152.5 mg/L、151.6 mg/L	0.3%	≤10%	合格
氯化物	ND	0.007 mg/L	合格	64.52 mg/L \ 64.52 mg/L	0	≤10%	合格
录化初	ND	0.007 mg/L	合格	63.61 mg/L、63.94 mg/L	0.3%	≤10%	合格
铁	ND	0.02 mg/L	合 格	ND (0.02) , ND (0.02)	/	/	/
锰	ND	0.004 mg/L	合格	ND (0.004) 、ND (0.004)	/	/	/
钠	ND	0.12 mg/L	合 格	17.1 mg/L、16.1 mg/L	3.0%	≤25%	合格
汞	ND	0.00004 mg/L	合格	ND (0.00004) , ND (0.00004)	/	/	/
砷	ND	0.0003 mg/L	合 格	3.2 μg/L、3.3 μg/L	1.5%	≤20%	合格
镉	ND	0.00005 mg/L	合格	ND (0.00005) , ND (0.00005)	/	/	/
铅	ND	0.00009 mg/L	合格	ND (0.00009) ND (0.00009)	/	/	/

1、现场空白样测定值应小于方法检出限;

备注

- 2、平行双样偏差依据各指标检测方法相关要求;
- 3、"ND"表示检测结果低于分析方法检出限。

表 8.2-4 地下水监测加标回收分析结果

检测项目	加标回收分析						
	分析编号	回收率(%)	允许回收率(%)	结果评判			
复易	HJ25082001-1-1-1 加标	97.5	95~105	符合要求			
氨氮	HJ25082001-2-1-1 加标	103	95~105	符合要求			
硝酸盐	HJ25082001-1-1-1 加标	100	90~110	符合要求			
<b>們</b> 附	HJ25082001-2-1-1 加标	100	90~110	符合要求			
亚硝酸盐	HJ25082001-1-1-1 加标	95.0	85~115	符合要求			
业阴散血	HJ25082001-2-1-1 加标	99.4	85~115	符合要求			
挥发酚	HJ25082001-1-1-1 加标	102	85~115	符合要求			

		加标回收	 分析	
检测项目	分析编号	回收率(%)	允许回收率(%)	结果评判
	HJ25082001-2-1-1 加标	95.0	85~115	符合要求
氢化咖	HJ25082001-1-1-1 加标	100	85~115	符合要求
氰化物	HJ25082001-2-1-1 加标	100	85~115	符合要求
总硬度	HJ25082001-1-1-1 加标	96.0	95~105	符合要求
心怏没	HJ25082001-2-1-1 加标	98.0	95~105	符合要求
氟化物	空白加标	98.8	80~120	符合要求
<b>州(147)</b>	空白加标	98.8	80~120	符合要求
六价铬	HJ25082001-1-1-1 加标	101	85~115	符合要求
八川竹	HJ25082001-2-1-1 加标	101	85~115	符合要求
硫酸盐	空白加标	101	80~120	符合要求
圳政益	空白加标	101	80~120	符合要求
氯化物	空白加标	98.5	80~120	符合要求
录化初	空白加标	98.5	80~120	符合要求
钠	空白加标	113	70~120	符合要求
———— 镉	空白加标	100	70~130	符合要求
′網	空白加标	112	70~130	符合要求
<i>長</i> 几	空白加标	110	70~130	符合要求
铅	空白加标	118	70~130	符合要求

表 8.2-5 有组织气样监测空白及加标回收分析结果

	空白村	羊分析		加标回	女分析	
检测项目	检测结果	合格情况	分析编号	回收率(%)	允许回收率 (%)	结果评判
氯化氢	ND	合格	空白加标	91.1	90~110	符合要求
录化名	ND	合格	空白加标	91.3	90~110	符合要求
镉	ND	合格	空白加标	100	70~120	符合要求
镍	ND	合格	空白加标	98.0	70~120	符合要求
铊	ND	合格	空白加标	102	70~120	符合要求
锑	ND	合格	空白加标	100	70~120	符合要求
砷	ND	合格	空白加标	99.5	70~120	符合要求
铅	ND	合格	空白加标	102	70~120	符合要求
铬	ND	合格	空白加标	100	70~120	符合要求
钴	ND	合格	空白加标	99.5	70~120	符合要求
铜	ND	合格	空白加标	102	70~120	符合要求
锰	ND	合格	空白加标	99.5	70~120	符合要求

表 8.2-6	固体废物监测质控结果
1X 0.2-U	四件及彻皿侧则压缩木

监测项目	全程 序空 白	检出限	评价	平行样品测定浓度	平行双 样相对 偏差	平行双样 相对偏差 允许限值	评价
含水率	ND	/	合格	20.1%、20.5%	1.0%	≤10%	合 格
砷	ND	0.00010 mg/L	合格	13.7 μg/L、13.6 μg/L	0.4%	≤20%	合 格
	ND	0.004 mg/L	合格	ND (0.004) 、ND (0.004)	/	/	/
硒	ND	0.00010 mg/L	合格	4.67 μg/L、4。60 μg/L	0.8%	≤20%	合 格
汞	ND	0.00002 mg/L	合格	ND (0.00002) ND (0.00002)	/	/	/
热灼减率	ND	0.2 %	合格	2.2 %、2.1 %	2.3%	≤20%	合 格
	1、现	场空白样测定值	直应小	于方法检出限;			

备注

- 2、平行双样偏差依据各指标检测方法相关要求;
- 3、"ND"表示检测结果低于分析方法检出限。

表 8.2-7 固体废物监测质控结果

检测项目	加标回收分析						
位侧坝日	分析编号	回收率(%)	允许回收率(%)	结果评判			
总铬	空白加标	94.7	70~120	符合要求			
铜	空白加标	102	70~120	符合要求			
铅	空白加标	95.1	70~120	符合要求			
锌	空白加标	71.8	70~120	符合要求			
镉	空白加标	95.8	70~120	符合要求			
铍	空白加标	98.3	70~120	符合要求			
钡	空白加标	81.6	70~120	符合要求			
镍	空白加标	80.2	70~120	符合要求			

表 8.2-8 土壤监测质控结果

监测项目	全程序空白	检出限	评价	平行样品测定浓度	平行双样相对偏差	平行双样 相对偏差 允许限值	评价
铊	ND	0.1 mg/kg	合格	ND (0.1) , ND (0.1)	/	/	/
锑	ND	0.01 mg/kg	合格	1.69 mg/kg、1.94 mg/kg	6.9%	≤20%	合格
砷	ND	0.01 mg/kg	合格	13.8 mg/kg、13.8 mg/kg	0	≤15%	合格

监测项目	全程序空白	检出限	评价	平行样品测定浓度	平行双样相对偏差	平行双样 相对偏差 允许限值	评价
镉	ND	0.01 mg/kg	合格	0.60 mg/kg、 0.50 mg/kg	13%	≤20%	合格
汞	ND	0.0002 mg/kg	合格	96.9 μg/kg、105 μg/kg	4.0%	≤25%	合格
六价铬	ND	0.5 mg/kg	合格	ND (0.5) , ND (0.5)	/	/	/
铜	ND	1 mg/kg	合格	44 mg/kg 、46 mg/kg	2.2%	≤20%	合格
铅	ND	10 mg/kg	合格	51 mg/kg、55 mg/kg	3.8%	≤20%	合格
镍	ND	3 mg/kg	合格	33 mg/kg  38 mg/kg	7.0%	≤20%	合格
锰	ND	0.4 mg/kg	合格	698 mg/kg、718 mg/kg	1.4%	≤30%	合格
钴	ND	0.4 mg/kg	合格	14.6 mg/kg、16.4 mg/kg	5.8%	≤30%	合格
	1、现场的	空白样测定	值应小	于方法检出限;			
备注	2、平行为						

表 8.2-9 土壤监测加标回收分析结果

3、"ND"表示检测结果低于分析方法检出限。

检测项目		加标回收分析						
位例切日	分析编号	分析编号 回收率(%) 允许回收率(%) 结果语						
六价铬	空白加标	95.0	70~130	符合要求				

表 8.2-10 噪声监测质控结果

—————————————————————————————————————	校	准声级(dB)	A	夕 沙
侧里口别	测量前	测量后	差值	备注
2025年8月26日	93.8	93.8	0	测量前、后校准声级差值小于
2025年8月27日	93.8	93.8	0	0.5 dB(A),测量数据有效。

综合表 8.2-1~表 8.2-10 质量控制结果可知,本次竣工环境保护验收监测采样分析过程精密度、准确度控制符合标准要求,数据结果可信

## 9、验收监测结果及分析

## 9.1 监测期间工况分析

本次验收监测时间为 2025 年 8 月 26 日~8 月 27 日,根据建设单位提供的生产资料,验收监测期间,武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目生产负荷稳定,各项生产设施及环保设施均运行正常,满足验收监测条件。生产工况记录详见附件 9。

验收监测期间生产工况统计情况见表 9.1-1。

生产负荷 设计处理能力 焚烧炉名称 监测日期 监测期间实际处理量(t/d) (t/d)(%) 753 (其中生活垃圾 70%, 2025年8月26日 125 一般固废 30%) 5#焚烧炉 600 749 (其中生活垃圾 70%, 2025年8月27日 125 一般固废 30%) 758 (其中生活垃圾 70%, 2025年8月26日 126 一般固废 30%) 6#焚烧炉 600 738 (其中生活垃圾 70%, 2025年8月27日 123 一般固废 30%)

表 9.1-1 监测期间生产工况统计表

## 9.2 污染源监测结果

## 9.2.1 废气监测结果

有组织废气监测结果见表 9.2-1~表 9.2-3; 无组织废气监测结果见表 9.2-4; 验收监测期间气象参数情况见表 9.2-5。

监测	监测		监测项目		监测结果		平均值	评价	达标
时间 点位			血侧坝日	1	2	3	一场但	标准	评价
		烟气机	示干流量(m³/h)	101728	119116	117450	112765	/	/
	5#生 活垃	,	含氧量 (%)	6.0	5.5	6.6	6.0	/	/
2025年 8月		圾焚     颗粒       烧炉     物	实测浓度(mg/m³)	1.0	1.2	1.2	1.1	/	/
26 日			计算浓度(mg/m³)	0.7	0.8	0.8	0.8	30	达标
20 д	(©1)		排放速率(kg/h)	0.102	0.143	0.141	0.129	/	/
		二氧	二氧 实测浓度(mg/m³) ]		ND (3)	ND (3)	/	/	/

表 9.2-1 有组织废气(不含二噁英类)监测结果一览表 1

监测	监测		ILE MAILETT I		监测结果		77 1 L kb	评价	达标
时间	点位		监测项目	1	2	3	平均值	标准	评价
		化硫	计算浓度(mg/m³)	/	/	/	/	100	达标
			排放速率(kg/h)	/	/	/	/	/	/
			实测浓度(mg/m³)	127	132	132	130	/	/
		<b>氮氧</b>	计算浓度(mg/m³)	85	85	92	87	100	达标
		化物	排放速率(kg/h)	12.9	15.7	15.5	14.7	/	/
			实测浓度(mg/m³)	ND (3)	ND (3)	ND (3)	/	/	/
		一氧	计算浓度(mg/m³)	/	/	/	/	100	达标
		化碳	排放速率(kg/h)	/	/	/	/	/	/
		- n	实测浓度(mg/m³)	ND(0.2)	ND(0.2)	ND(0.2)	/	/	/
		氯化	计算浓度(mg/m³)	/	/	/	/	60	达标
		氢	排放速率(kg/h)	/	/	/	/	/	/
		烟气机	示干流量(m³/h)	112558	121796	124120	119491	/	/
			含氧量(%)		7.6	8.0	7.2	/	/
		mrtsk).	实测浓度(mg/m³)	1.7	1.5	1.3	1.5	/	/
		颗粒	计算浓度(mg/m³)	1.1	1.1	1.0	1.1	30	达标
	6#生 化码	170	排放速率(kg/h)	0.191	0.183	0.161	0.178	/	/
		. =	实测浓度(mg/m³)	23	6	9	13	/	/
	6#生	二氧	计算浓度(mg/m³)	15	4	7	9	( )	
	活垃	1414)ii	排放速率(kg/h)	2.59	0.731	1.12	1.48	/	/
	圾焚		实测浓度(mg/m³)	106	92	90	96	/	/
	烧炉	氮氧   化物	计算浓度(mg/m³)	71	69	69	70	100	达标
	(©2)		排放速率(kg/h)	11.9	11.2	11.2	11.4	/	/
			实测浓度(mg/m³)	ND (3)	ND (3)	ND (3)	/	/	/
		一氧	计算浓度(mg/m³)	/	/	/	/	100	达标
		化碳	排放速率(kg/h)	/	/	/	/	/	/
		<b>≓</b> //.	实测浓度(mg/m³)	ND(0.2)	ND(0.2)	ND(0.2)	/	/	/
		氯化 氢	计算浓度(mg/m³)	/	/	/	/	60	达标
		全人	排放速率(kg/h)	/	/	/	/	/	/
		烟气机	示干流量(m³/h)	114210	115061	114543	114605	/	/
			含氧量 (%)	5.9	5.9	6.5	6.1	/	/
	5#生	mrtsk).	实测浓度(mg/m³)	1.0	1.1	1.0	1.0	/	/
2025年		颗粒	计算浓度(mg/m³)	0.7	0.7	0.7	0.7	30	达标
8月	圾焚	物	排放速率(kg/h)	0.114	0.127	0.115	0.119	/	/
27 日	烧炉	_ =	实测浓度(mg/m³)	ND (3)	5	23	/	/	/
	(©1)	二氧	计算浓度(mg/m³)	/	3	16	/	100	达标
		化硫	排放速率(kg/h)	/	0.575	2.63	/	/	/
		氮氧	实测浓度(mg/m³)	136	110	100	115	/	/

监测	监测		11次301755 日		监测结果		平均值	评价	达标
时间	点位		监测项目	1	2	3	平均但	标准	评价
		化物	计算浓度(mg/m³)	90	73	69	77	100	达标
			排放速率(kg/h)	15.5	12.7	11.5	13.2	/	/
		/=	实测浓度(mg/m³)	ND (3)	ND (3)	ND (3)	/	/	/
		一氧化碳	计算浓度(mg/m³)	/	/	/	/	100	达标
		1/1/1//	排放速率(kg/h)	/	/	/	/	/	/
		<i>⊨</i> /1.	实测浓度(mg/m³)	ND(0.2)	ND(0.2)	ND(0.2)	/	/	/
		氯化 氢	计算浓度(mg/m³)	/	/	/	/	60	达标
		全人	排放速率(kg/h)	/	/	/	/	/	/
		烟气机	烟气标干流量(m³/h)		116886	114555	116615	/	/
		-	含氧量 (%)	7.7	7.1	8.3	7.7	/	/
		   颗粒	实测浓度(mg/m³)	1.6	1.7	1.6	1.6	/	/
		     物	计算浓度(mg/m³)	1.2	1.2	1.3	1.2	30	0
		120	排放速率(kg/h)	0.189	0.199	0.183	0.190	/	/
		_ /=	实测浓度(mg/m³)	26	14	21	20	/	/
	6#生	二氧化硫	计算浓度(mg/m³)	20	10	17	16	100	达标
	活垃	76.1911	排放速率(kg/h)	3.08	1.64	2.41	2.38	/	/
	圾焚		实测浓度(mg/m³)	78	118	73	90	/	/
	烧炉	氮氧   化物	计算浓度(mg/m³)	59	85	57	67	100	达标
	(©2)	1111/1	排放速率(kg/h)	9.24	13.8	8.36	10.5	/	/
	一军化破	/=	实测浓度(mg/m³)	ND (3)	ND (3)	ND (3)	/	/	/
			计算浓度(mg/m³)	/	/	/	/	100	达标
			排放速率(kg/h)	/	/	/	/	/	/
		<b>写</b> // ₂	实测浓度(mg/m³)	ND(0.2)	ND(0.2)	ND(0.2)	/	/	/
		<a href="#"></a>	计算浓度(mg/m³)	/	/	/	/	60	达标
		全人	排放速率(kg/h)	/	/	/	/	/	/

注: 计算浓度为根据 GB18458 规定将实测浓度换算后的基准氧含量排放浓度。

表 9.2-2 有组织废气 (不含二噁英类) 监测结果一览表 2

监测	监测		监测项目		监测结果		平均值	评价	达标
时间	点位		血侧项目	1	2	3	一场但	标准	评价
		烟气标干流量(m³/h)		108977	108579	114949	110835	/	/
	5#生 活垃 圾焚 烧炉 (◎1)	Į.	含氧量 (%)	5.8	6.3	8.1	6.8	/	/
2025年 8月		工 75	实测浓度(mg/m³)	ND(3×10 ⁻⁶ )	3.29×10 ⁻⁴	2.48×10 ⁻⁴	/	/	/
26 日		其化	计算浓度(mg/m³)	/	2.24×10 ⁻⁴	1.92×10 ⁻⁴	/	0.05	达标
		△	排放速率(kg/h)	/	3.57×10 ⁻⁵	2.85×10 ⁻⁵	/	/	/
		烟气板	示干流量(m³/h)	113524	112062	109074	111553	/	/

监测	监测				监测结果		교 나 나	评价	达标
时间	点位		监测项目	1	2	3	平均值	标准	评价
		2	含氧量 (%)	5.9	6.7	6.5	6.4	/	/
			实测浓度(mg/m³)	4.60×10 ⁻⁴	4.52×10 ⁻⁴	3.85×10 ⁻⁴	4.32×10 ⁻⁴	/	/
		镉+铊	计算浓度(mg/m³)	3.05×10 ⁻⁴	3.16×10 ⁻⁴	2.66×10 ⁻⁴	2.96×10 ⁻⁴	0.1	达标
			排放速率(kg/h)	5.22×10 ⁻⁵	5.07×10 ⁻⁵	4.20×10 ⁻⁵	4.83×10 ⁻⁵	/	/
		锑+砷+	实测浓度(mg/m³)	0.0173	0.0156	0.0135	0.0155	/	/
		铅+铬+ 钴+铜+	计算浓度(mg/m³)	0.0115	0.0109	0.0093	0.0106	1.0	达标
		锰+镍	排放速率(kg/h)	1.96×10 ⁻³	1.75×10 ⁻³	1.47×10 ⁻³	1.73×10 ⁻³	/	/
		烟气杨	示干流量(m³/h)	120959	124164	119003	121375	/	/
		2	含氧量 (%)	7.7	7.4	5.4	6.8	/	/
		汞及	实测浓度(mg/m³)	1.34×10 ⁻⁴	1.44×10 ⁻⁴	1.30×10 ⁻⁴	1.36×10 ⁻⁴	/	/
		其化	计算浓度(mg/m³)	1.01×10 ⁻⁴	1.06×10 ⁻⁴	8.33×10 ⁻⁵	9.68×10 ⁻⁵	0.05	达标
	6#生	合物	排放速率(kg/h)	1.62×10 ⁻⁵	1.79×10 ⁻⁵	1.55×10 ⁻⁵	1.65×10 ⁻⁵	/	/
	活垃 圾焚	烟气标	示干流量(m³/h)	119098	119748	119184	119343	/	/
		2	含氧量 (%)	6.8	7.7	7.7	7.4	/	/
	烧炉	1	实测浓度(mg/m³)	2.30×10 ⁻⁴	3.25×10 ⁻⁴	2.12×10 ⁻⁴	2.56×10 ⁻⁴	/	/
	(©2)		计算浓度(mg/m³)	1.62×10 ⁻⁴	2.44×10 ⁻⁴	1.59×10 ⁻⁴	1.88×10 ⁻⁴	0.1	达标
			排放速率(kg/h)	2.74×10 ⁻⁵	3.89×10 ⁻⁵	2.53×10 ⁻⁵	3.05×10 ⁻⁵	/	/
			实测浓度(mg/m³)	9.95×10 ⁻³	0.0130	7.46×10 ⁻³	0.01014	/	/
			计算浓度(mg/m³)	7.01×10 ⁻³	0.0098	5.61×10 ⁻³	7.47×10 ⁻³	1.0	达标
			排放速率(kg/h)	1.19×10 ⁻³	1.56×10 ⁻³	8.89×10 ⁻⁴	1.21×10 ⁻³	/	/
		烟气杨	示干流量(m³/h)	114175	106202	112168	110848	/	/
		2	含氧量 (%)	6.4	8.7	9.8	8.3	/	/
		汞及	实测浓度(mg/m³)	2.12×10 ⁻⁴	2.07×10 ⁻⁴	1.69×10 ⁻⁴	1.96×10 ⁻⁴	/	/
	5#生	其化	计算浓度(mg/m³)	1.45×10 ⁻⁴	1.68×10 ⁻⁴	1.51×10 ⁻⁴	1.55×10 ⁻⁴	0.05	达标
2025 年	5#王 活垃	合物	排放速率(kg/h)	2.42×10 ⁻⁵	2.20×10 ⁻⁵	1.90×10 ⁻⁵	2.17×10 ⁻⁵	/	/
8月	圾焚	烟气标	示干流量(m³/h)	110338	113114	115725	113059	/	/
27 日	烧炉	2	含氧量 (%)	7.8	7.0	5.7	6.8	/	/
	(©1)		实测浓度(mg/m³)	4.61×10 ⁻⁴	4.11×10 ⁻⁴	3.56×10 ⁻⁴	4.02×10 ⁻⁴	/	/
		镉+铊	, , ,		2.94×10 ⁻⁴	2.33×10 ⁻⁴	2.92×10 ⁻⁴	0.1	达标
			排放速率(kg/h)	5.09×10 ⁻⁵	4.65×10 ⁻⁵	4.12×10 ⁻⁵	4.62×10 ⁻⁵	/	/
		锑+砷+	实测浓度(mg/m³)	0.0182	0.0171	0.0125	0.0159	/	/

监测	监测		내는 기타 구도 그		监测结果		₩ 44 At	评价	达标
时间	点位		监测项目	1	2	3	平均值	标准	评价
		铅+铬+	计算浓度(mg/m³)	0.0138	0.0122	0.0082	0.0114	1.0	达标
		钴+铜+ 锰+镍	排放速率(kg/h)	2.01×10 ⁻³	1.93×10 ⁻³	1.45×10 ⁻³	1.80×10 ⁻³	/	/
		烟气杨	示干流量(m³/h)	109921	114472	117763	114052	/	/
		/ F	含氧量(%)		6.8	6.8	7.0	/	/
		汞及 其化 合物 6#生	实测浓度(mg/m³)	9.7×10 ⁻⁵	7.1×10 ⁻⁵	5.6×10 ⁻⁵	7.5×10 ⁻⁵	/	/
			计算浓度(mg/m³)	7.08×10 ⁻⁵	5.00×10 ⁻⁵	3.94×10 ⁻⁵	5.34×10 ⁻⁵	0.05	达标
	C#H-		排放速率(kg/h)	1.07×10 ⁻⁵	8.13×10 ⁻⁶	6.59×10 ⁻⁶	8.47×10 ⁻⁶	/	/
	0#生   活垃	烟气杨	示干流量(m³/h)	109197	108579	106229	108002	/	/
	圾焚	/ F	含氧量 (%)	7.1	9.0	7.0	7.7	/	/
	烧炉		实测浓度(mg/m³)	2.84×10 ⁻⁴	4.74×10 ⁻⁴	3.60×10 ⁻⁴	3.73×10 ⁻⁴	/	/
	(©2)	镉+铊	计算浓度(mg/m³)	2.04×10 ⁻⁴	3.95×10 ⁻⁴	2.57×10 ⁻⁴	2.85×10 ⁻⁴	0.1	达标
			排放速率(kg/h)	3.10×10 ⁻⁵	5.15×10 ⁻⁵	3.82×10 ⁻⁵	4.02×10 ⁻⁵	/	/
		锑+砷+	实测浓度(mg/m³)	9.81×10 ⁻³	0.0224	0.0135	0.0152	/	/
		铅+铬+ 钴+铜+ 锰+镍			7.06×10 ⁻³	0.0187	0.0096	0.0118	1.0
			排放速率(kg/h)	1.07×10 ⁻³	2.43×10 ⁻³	1.43×10 ⁻³	1.64×10 ⁻³	/	/

注: 计算浓度为根据 GB18458 规定将实测浓度换算后的基准氧含量排放浓度。

表 9.2-3 有组织废气(二噁英类)监测结果一览表

监测	监测	监测项目		监测结果		均值	评价	达标
时间	点位	<b>一                                    </b>	1	2	3	均值	标准	评价
2025年	5#焚烧炉排气 筒(◎1)	二噁英排放浓度 (ngTEQ/m³)	0.024	0.013	2.6×10 ⁻³	0.013	0.1	达标
9月 - 5日	6#焚烧炉排气 筒(◎2)	二噁英排放浓度 (ngTEQ/m³)	4.8×10 ⁻³	1.5×10 ⁻³	2.1×10 ⁻³	2.8×10 ⁻³	0.1	达标
2025年	5#焚烧炉排气 筒(◎1)	二噁英排放浓度 (ngTEQ/m³)	2.7×10 ⁻³	3.0×10 ⁻³	3.2×10 ⁻³	3.0×10 ⁻³	0.1	达标
9月	6#焚烧炉排气 筒(◎2)	二噁英排放浓度 (ngTEQ/m³)	2.8×10 ⁻³	2.4×10 ⁻³	3.9×10 ⁻³	3.0×10 ⁻³	0.1	达标

表 9.2-4 无组织废气监测结果达标情况一览表

采样 日期 检测项目		频	检测结	果(单位:	mg/m ³ ;	臭气浓度无	量纲)		<b>达标</b> 分析
	次	●1 厂区	●2 厂区	●3 厂区	●4 厂区	最大值	标准限值		
			上风向	下风向1	下风向 2	下风向3	秋八臣		
2025	甲石 坐台 水加	1	0.264	0.352	0.366	0.346	0.366	1	达标
年8	下 8   颗粒物	2	0.249	0.350	0.353	0.326	0.353	1	达标

<del></del> 采样		频	检测结	果(单位:	mg/m³; J	臭气浓度无	量纲)		达标
日期	检测项目	次	●1 厂区 上风向	●2 厂区 下风向 1	●3 厂区 下风向 2	●4 厂区 下风向 3	最大值	标准限值	分析
月 26		3	0.255	0.343	0.356	0.319	0.356	1	达标
日		1	0.11	0.13	0.13	0.16	0.16	1.5 対 1.5 対 1.5 対 1.5 対 1.5 対 1.5 対 2.0	达标
	氨气	2	0.15	0.15	0.12	0.15	0.15	1.5	达标
		3	0.12	0.14	0.13	0.14	0.14	1.5	达标
		1	0.020	0.002	0.003	0.002	0.020	0.06	达标
	硫化氢	2	0.002	0.003	0.002	0.002	0.003	0.06	达标
		3	0.004	0.003	0.005	0.002	0.005	0.06	达标
		1	11	14	12	17	17		达标
	臭气浓度	2	12	14	13	16	16	20	达标
		3	13	13	16	18	18	20	达标
		1	0.263	0.353	0.345	0.333	0.353	1 达	达标
	颗粒物	2	0.273	0.346	0.341	0.328	0.346	1	达标
		3	0.259	0.341	0.322	0.334	0.341	1	达标
		1	0.14	0.13	0.13	0.14	0.14	1.5	达标
2025	氨气	2	0.10	0.15	0.10	0.15	0.15	1.5	达标
年8		3	0.18	0.16	0.16	0.13	0.18	1.5	达标
月 27		1	0.002	0.002	0.002	0.002	0.002	0.06	达标
日	硫化氢	2	0.002	0.003	0.003	0.003	0.003	0.06	达标
		3	0.002	0.002	0.003	0.003	0.003	0.06	达标
		1	19	17	17	18	19	20	达标
	臭气浓度	2	19	16	19	17	19	20	达标
		3	16	18	16	19	19	20	达标

表 9.2-5 验收监测期间气象参数统计表

时间	天气	气温 (℃)	气压 (kPa)	风向	风速 (m/s)
	晴	42	100.5	南	1.9
2025年8月26日	晴	44	100.3	南	1.9
	晴	44	100.3	南	1.9
	晴	38	100.8	南	2.1
2025年8月27日	晴	40	100.6	东南	2.4
	晴	43	100.5	南	2.1

有组织废气监测结果表明:验收监测期间,武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目 5#生活垃圾焚烧炉有组织废气排放口 DA009 氮氧化物排放浓度均满足《武汉市人民政府关于印发武汉市 2020 年大气污染防治工作方案的通知》中"垃圾焚烧发电企业"限值要求;颗粒物、二氧化硫、氯化氢、汞及其化合物(以 Hg 计)、镉、铊及其化合物(以 Cd+Tl 计)、锑、砷、铅、铬、钴、铜、锰、镍及其化合物(以 Sb+As+Pb+Cr+Co+Cu+Mn+Ni 计)、二噁英类监测结果均能满足《生活垃圾焚烧污染控制标准》(GB18485-2014)表 4标准限值要求。

无组织废气监测结果表明:验收监测期间天气状况晴好,符合验收监测对天气条件的要求;项目厂界上下风向无组织废气监测点位中,颗粒物浓度满足《大气污染物综合排放标准》(GB16297-1996)表2中无组织排放浓度监控限值要求;氨、硫化氢、臭气浓度监测结果满足《恶臭污染物排放标准》(GB14554-93)表1中二级新扩改建厂界标准限值要求。

#### 9.2.2 废水监测结果

废水监测结果见表 9.2-6:

表 9.2-6 废水监测结果达标情况一览表 (单位: mg/L; pH 无量纲; 粪大肠菌群: MPN/L)

 监测	监测	<b>松测程</b> 口		<u></u> 监测			标准	达标
点位	日期	<b>检测项目</b>	第一次	第二次	第三次	均值	限值	分析
		рН	7.3	7.2	7.1	/	6~9	达标
		悬浮物	4	5	4	4	400	达标
渗滤 液处	化学需氧量	55	61	65	60	500	达标	
		五日生化需 氧量	12.8	14.6	15.7	14.4	300	达标
		总氮	12.1	7.75	11.0	10.3	70	达标
理站	2025	氨氮	0.077	0.093	0.071	0.080	45	达标
车间	年8	总磷	0.07	0.06	0.06	0.06	8	达标
排口	月 26 日	动植物油	ND (0.06)	0.06	0.11	0.07	100	达标
DW0	H	总汞	ND(0.00004)	ND(0.00004)	ND(0.00004)	0.00002	0.001	达标
04		总镉	0.00034	0.00007	0.00035	0.00025	0.01	达标
		总铬	ND(0.004)	ND(0.004)	ND(0.004)	0.002	0.1	达标
		六价铬	ND(0.004)	ND(0.004)	ND(0.004)	0.002	0.05	达标
		总砷	0.0088	0.0091	0.0085	0.0088	0.1	达标
		总铅	0.00193	0.00015	0.00628	0.00279	0.1	达标

监测	监测	14 MM -45 F1		监测			标准	 达标
点位	日期	检测项目	第一次	第二次	第三次	均值	限值	分析
		pН	7.4	7.2	7.4	/	6~9	达标
		悬浮物	ND (4)	ND (4)	ND (4)	2	400	达标
		化学需氧量	61	70	63	65	500	达标
		五日生化需 氧量	14.1	16.4	14.6	15.0	300	达标
		总氮	10.7	10.8	9.75	10.42	70	达标
	2025	氨氮	0.057	0.052	0.060	0.056	45	达标
	年8	总磷	0.05	0.06	0.06	0.06	8	达标
	月 27 日	动植物油	0.06	0.07	0.09	0.07	100	达标
	Н	总汞	ND(0.00004)	ND(0.00004)	ND(0.00004)	0.00002	0.001	达标
		总镉	0.00008	0.00032	0.00025	0.00022	0.01	达标
		总铬	ND(0.004)	ND(0.004)	ND(0.004)	0.002	0.1	达标
		六价铬	ND(0.004)	ND(0.004)	ND(0.004)	0.002	0.05	达标
		总砷	0.0091	0.0085	0.0086	0.0087	0.1	达标
		总铅	0.00099	0.0132	0.00061	0.00493	0.1	达标
		pН	7.0	7.2	7.3	/	6~9	达标
		悬浮物	ND (4)	ND (4)	ND (4)	2	400	达标
		化学需氧量	53	67	53	58	500	达标
	-	五日生化需 氧量	12.1	16.1	12.3	13.5	300	达标
		总氮	11.3	9.73	10.6	10.5	70	达标
	2025	氨氮	0.038	0.055	0.034	0.042	45	达标
	年8	总磷	0.07	0.07	0.06	0.07	8	达标
	月 26	动植物油	0.08	0.08	0.11	0.09	100	达标
厂区	日	总汞	ND(0.00004)	ND(0.00004)	ND(0.00004)	0.00002	0.001	达标
总排		总镉	0.00209	0.00014	0.00010	0.00078	0.01	达标
		总铬	ND(0.004)	ND(0.004)	ND(0.004)	0.002	0.1	达标
DW0		六价铬	ND(0.004)	ND(0.004)	ND(0.004)	0.002	0.05	达标
03		总砷	0.0077	0.0044	0.0090	0.0070	0.1	达标
		总铅	0.0468	0.00246	0.00035	0.01657	0.1	达标
		粪大肠菌群	$6.7 \times 10^{2}$	$6.3 \times 10^{2}$	$6.4 \times 10^{2}$	$6.5 \times 10^{2}$	10000	达标
		pН	7.1	7.1	7.3	/	6~9	达标
		悬浮物	ND (4)	ND (4)	ND (4)	2	400	达标
	2025	化学需氧量	59	74	64	66	500	达标
	年8月27	五日生化需 氧量	13.1	17.6	14.4	15.0	300	达标
	日	总氮	10.6	10.5	10.4	10.5	70	达标
		氨氮	0.052	0.041	0.048	0.047	45	 达标

<u></u> 监测	监测	检测项目		监测	结果		标准	达标
点位	日期		第一次	第二次	第三次	均值	限值	分析
		总磷	0.06	0.06	0.06	0.06	8	达标
		动植物油	0.09	0.16	0.15	0.13	100	达标
		总汞	ND(0.00004)	0.00004	ND(0.00004)	0.00002	0.001	达标
		总镉	0.00021	0.00030	0.00030	0.00027	0.01	达标
		总铬	ND(0.004)	ND(0.004)	ND(0.004)	0.002	0.1	达标
		六价铬	ND(0.004)	ND(0.004)	ND(0.004)	0.002	0.05	达标
		总砷	0.0085	0.0092	0.0084	0.0087	0.1	达标
		总铅	0.00215	0.00060	0.00065	0.00113	0.1	达标
		粪大肠菌群	$6.6 \times 10^{2}$	$6.4 \times 10^2$	$6.6 \times 10^{2}$	$6.5 \times 10^{2}$	10000	达标

废水监测结果表明:验收监测期间,本项目废水总排口 DW003、渗滤液处理站排口 DW004 中总汞、总镉、总铬、六价铬、总砷、总铅、粪大肠菌群数日均排放浓度最大值均满足《生活垃圾填埋场污染控制标准》(GB16889-2024)表 2 标准限值要求; pH、COD、BOD5、SS、动植物油日均排放浓度最大值均满足《污水综合排放标准》(GB8978-1996)表 4 三级标准限值要求; 氨氮、总氮、总磷 日均排放浓度最大值均满足《污水排入城镇下水道水质标准》(GB/T31962-2015)表 1 中 A 级标准限值要求。

### 9.2.3 厂界噪声监测结果

厂界噪声监测结果见表 9.2-7。

表 9.2-7 厂界噪声检测结果一览表

检测 日期	检测点位	检测时段	检测结果(dB(A))	标准限值 (dB(A))	达标 分析
	厂界东侧外 1m 处 N1	昼间	46.9	60	达标
	) 乔尔侧介 III 处 NI	夜间	40.6	50	达标
	厂界东侧外 1m 处 N2	昼间	50.7	60	达标
2025	) 乔尔侧介 Im 处 N2	夜间	46.1	50	达标
	厂界南侧外 1m 处 N3	昼间	49.2	60	达标
2025 年 8	)外的侧外 IIII 处 N3	夜间	47.4	50	达标
月 26	厂界南侧外 1m 处 N4	昼间	54.6	60	达标
日	)外的侧外 IIII 处 N4	夜间	49.0	50	达标
	厂界西侧外 1m 处 N5	昼间	53.5	60	达标
	) 乔四侧介 Im 处 N3	夜间	48.7	50	达标
	厂界面侧机 1 m /h N/6	昼间	47.1	60	达标
	厂界西侧外 1m 处 N6	夜间	45.4	50	达标
	厂界北侧外 1m 处 N7	昼间	52.4	60	达标

	检测点位	检测时段	检测结果(dB(A))	标准限值 (dB(A))	达标 分析
		夜间	47.2	50	达标
	二田小河内 1 bb NIO	昼间	51.9	60	达标
	厂界北侧外 1m 处 N8	夜间	42.0	50	达标
	厂界东侧外 1m 处 N1	昼间	49.2	60	达标
		夜间	40.3	50	达标
		昼间	51.7	60	达标
	) 乔尔侧介 Im 处 N2	夜间	47.4	50	达标
	厂界南侧外 1m 处 N3	昼间	50.0	60	达标
	) 孙 斛 侧 介 TIM 处 N3	夜间	46.2	50	达标
2025	厂界南侧外 1m 处 N4	昼间	53.3	60	达标
年8	) 孙 的 网介 IIII 处 N4	夜间	49.3	50	达标
月 27	厂界西侧外 1m 处 N5	昼间	55.5	60	达标
日	/ 3个四侧7下 1m 处 N3	夜间	48.7	50	达标
	厂界西侧外 1m 处 N6	昼间	46.3	60	达标
	) 3个四侧分下1m 处 N0	夜间	45.9	50	达标
	厂界北侧外 1m 处 N7	昼间	53.4	60	达标
	/ うたれ(例グド I <b>m</b> 处 <b>N</b> /	夜间	47.0	50	达标
	厂用业制机 1 bb NIO	昼间	51.4	60	达标
	厂界北侧外 1m 处 N8	夜间	43.0	50	达标

噪声监测结果表明:验收监测期间,项目厂界噪声监测点位(N1~N8)昼间、夜间噪声监测结果均满足《工业企业厂界环境噪声排放标准》(GB 12348-2008)中2类标准限值要求。

## 9.2.4 固体废物监测结果

固体废物监测结果见表 9.2-8~表 9.2-9。

表 9.2-8 固体废物 (二噁英) 监测结果一览表 (单位: μg TEQ/kg)

采样时间	采样位置	检测项目	毒性当量浓度 检测结果	标准限值	达标分析
2025-08-24 10:42	□1 飞灰固化	二噁英类	0.0044	3	达标
2025-08-25 11:04	车间固化物	二噁英类	0.0072	3	达标

表 9.2-9 固体废物 (不含二噁英) 监测结果一览表 (单位: mg/kg)

 监测点位	监测项目	单位	监测	结果	标准	达标
<b>监侧</b> 总征		<del>早</del> 亚	2025年8月26日	2025年8月27日	限值	分析
□1飞灰	含水率	%	20.3	19.5	/	/
固化车间	汞	mg/L	ND (0.00002)	ND (0.00002)	0.05	达标

	11次2017年日	* <del>  } </del>	监测	结果	标准	达标
监测点位 	监测项目	単位	2025年8月26日	2025年8月27日	限值	分析
固化物	硒	mg/L	0.00464	0.00202	0.1	达标
	铜	mg/L	ND (0.01)	ND (0.01)	40	达标
	铅	mg/L	ND (0.03)	ND (0.03)	0.25	达标
	锌	mg/L	19.7	0.78	100	达标
	镉	mg/L	ND (0.01)	ND (0.01)	0.15	达标
	铍	mg/L	ND (0.004)	ND (0.004)	0.02	达标
	钡	mg/L	0.37	0.45	25	达标
	镍	mg/L	ND (0.02)	ND (0.02)	0.5	达标
	总铬	mg/L	0.13	ND (0.02)	4.5	达标
	砷	mg/L	0.0136	0.0275	0.3	达标
	六价铬	mg/L	ND (0.004)	ND (0.004)	1.5	达标
	рН	/	11.36	11.43	/	/
□2 焚烧 炉炉渣	热灼减率	%	2.2	4.1	5%	达标

注: "ND"表示未检出或低于方法检出限;

固体废物监测结果表明:验收监测期间,本项目飞灰固化车间固化物各项指标浓度满足《生活垃圾填埋场污染控制标准》(GB16889-2024)6.3 及表 1 标准限值要求;炉渣热灼减率满足《生活垃圾焚烧污染物控制标准》(GB18485-2014)表 1 中标准限值要求。

### 9.2.5 污染物排放总量核算

#### (1) 大气污染物总量控制

本期工程将厂区一期工程原有的 3 台 400t/d 循环流化床锅炉(1#、2#、3#炉)置换升级为 2 台 600t/d 机械炉排炉(5#、6#炉),不新增垃圾焚烧处理能力。根据企业排污许可、本期项目环境影响报告书及其批复,本期工程实施后,全厂有组织废气污染源为 4#、5#、6#焚烧炉,不新增大气污染物总量控制指标,全厂大气污染物许可排放总量为二氧化硫: 150t/a,氮氧化物: 903.34t/a,烟粉尘(颗粒物): 76.57t/a。

本次验收监测大气污染物排放总量核算情况见表 9.2-10。

表9.2-10 大气污染物排放总量核算表(年运行时间以8760h计)

污染物名称	污染源	平均排放速 率(kg/h)	排放量 (t/a)	合计排放 总量(t/a)	总量控制 指标(t/a)	达标 评价
二氧化硫	4#焚烧炉	0.7567	6.63	29.20	150	达标

污染物名称	污染源	平均排放速 率(kg/h)	排放量 (t/a)	合计排放 总量(t/a)	总量控制 指标(t/a)	达标 评价
	5#焚烧炉	0.647	5.67			
	6#焚烧炉	1.93	16.91			
	4#焚烧炉	12.34	108.10			
氮氧化物	5#焚烧炉	13.95	122.20	326.22	903.34	达标
	6#焚烧炉	10.95	95.92			
	4#焚烧炉	4.29	37.58			
颗粒物 (烟尘)	5#焚烧炉	0.124	1.09	40.28	76.57	达标
	6#焚烧炉	0.184	1.61			

注: 5#、6 焚烧炉污染物排放速率为本次验收监测实测,4#焚烧炉污染物排放速率数据来源于中国电力工程顾问集团中南电力设计院有限公司《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书》。

根据本次验收监测结果核算,本期工程实施后,全厂大气污染物排放总量为二氧化硫 29.20t/a,氮氧化物 326.22t/a,颗粒物 40.28t/a,满足企业排污许可、本期项目环境影响报告书及其批复要求(全厂大气污染物许可排放总量为二氧化硫: 150t/a,氮氧化物: 903.34t/a,烟粉尘(颗粒物): 76.57t/a)。

#### (2) 水污染物总量控制

由于厂区原有项目在环评批复过程中循环水排水认定为清净下水,故原有项目无水污染物总量指标。本期项目实施后,各类废(污)水经处理后接入市政污水管网,进入金口污水处理厂。项目外排口水质满足《关于接收处理武汉绿色环保能源有限公司纳管污水的情况说明》要求的标准。废(污)水总量按照水量乘以金口污水处理厂的设计出水浓度进行核算。

根据武汉市生态环境局《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目污染物总量指标的审核意见》(武环函〔2021〕88 号),本工程实施后新增水污染物总量控制指标 COD17.5t/a、氨氮 1.75t/a,总量指标替代来源为 2021 年黄家湖污水处理厂扩建项目形成的削减量。

建设单位根据省人民政府办公厅印发《湖北省主要污染物排污权有偿使用和交易办法》(鄂政办发〔2016〕96号)有关规定,已于2021年11月2日通过湖北省排污权交易获得水污染物总量控制指标COD17.5t/a、氨氮1.75t/a(附件5)。

## 9.3 环境质量监测结果

## 9.3.1 环境空气质量监测结果

本次验收监测期间环境空气监测结果详见下表 9.3-1~表 9.3-4。

表 9.3-1 环境空气二噁英类监测结果达标情况一览表(单位: pg TEQ/m³)

采样时间	采样位置	检测项目	毒性当量浓 度检测结果	标准限值	达标分析
2025-08-23 11:00 ~ 2025-08-24 09:00	〇1 张家岭	二噁英类	0.058	≤0.6	达标
2025-08-24 11:40 ~ 2025-08-25 09:40	〇1 张家岭	二噁英类	0.082	≤0.6	 达标
2025-08-25 11:55 ~ 2025-08-26 09:55	〇1 张家岭	二噁英类	6.3×10 ⁻³	≤0.6	 达标
2025-08-23 11:00 ~ 2025-08-24 09:00	○2 双凤魏	二噁英类	0.011	≤0.6	<b>达标</b>
2025-08-24 13:22 ~ 2025-08-25 11:22	○2 双凤魏	二噁英类	0.012	≤0.6	达标
2025-08-25 12:28 ~ 2025-08-26 10:28	○2 双凤魏	二噁英类	0.10	≤0.6	达标
2025-08-23 11:20 ~ 2025-08-24 09:20	〇3 尖山曹	二噁英类	0.073	≤0.6	达标
2025-08-24 12:09 ~ 2025-08-25 10:09	〇3 尖山曹	二噁英类	0.11	≤0.6	达标
2025-08-25 12:15 ~ 2025-08-26 10:15	〇3 尖山曹	二噁英类	0.022	≤0.6	达标

表 9.3-2 环境空气小时均值监测结果达标情况一览表(单位: mg/m³)

<del></del> 采样	监测	检测		检测	结果		最大值	标准	达标
日期	点位	项目	第一次	第二次	第三次	第四次	取入但	限值	分析
	○1 张岭 ○2 双凤	氨气	0.13	0.10	0.08	0.09	0.13	200	达标
		硫化氢	0.002	0.005	0.003	0.002	0.005	10	达标
		甲硫醇	ND(0.0002)	ND(0.0002)	ND(0.0002)	ND(0.0002)	/	/	/
2025		氯化氢	0.189	0.143	0.192	0.175	0.192	50	达标
年 8 月 24		氨气	0.11	0.14	0.12	0.13	0.14	200	达标
刀 2 <b>年</b> 日		硫化氢	0.002	0.002	0.002	0.002	0.002	10	达标
Н		甲硫醇	ND(0.0002)	ND(0.0002)	ND(0.0002)	ND(0.0002)	/	/	/
		氯化氢	0.088	0.203	0.130	0.148	0.203	50	达标
	O3	氨气	0.13	0.10	0.10	0.14	0.14	200	达标

采样	监测	检测		检测结果 第一次 第二次 第二次 第二次				标准	达标
日期	点位	项目	第一次	第二次	第三次	第四次	最大值	限值	分析
	尖山	硫化氢	0.002	0.002	0.003	0.003	0.003	10	达标
	曹	甲硫醇	ND(0.0002)	ND(0.0002)	ND(0.0002)	ND(0.0002)	/	/	/
		氯化氢	0.293	0.214	0.183	0.224	0.293	50	达标
	0.1	氨气	0.13	0.07	0.06	0.11	0.13	200	达标
	○1 张家	硫化氢	0002	0.002	0.002	0.002	0.002	10	达标
	松多岭	甲硫醇	ND(0.0002)	ND(0.0002)	ND(0.0002)	ND(0.0002)	/	/	/
	24	氯化氢	0.203	0.204	0.169	0.137	0.204	50	达标
2025	$\bigcirc$ 2	氨气	0.14	0.13	0.05	0.08	0.14	200	达标
年8	O2	硫化氢	0.002	0.003	0.002	0.003	0.003	10	达标
月 25	双凤	甲硫醇	ND(0.0002)	ND(0.0002)	ND(0.0002)	ND(0.0002)	/	/	/
日		氯化氢	0.172	0.195	0.218	0.217	0.218	50	达标
	〇3 尖山 曹	氨气	0.12	0.12	0.15	0.12	0.15	200	达标
		硫化氢	0.002	0.003	0.002	0.002	0.003	10	达标
		甲硫醇	ND(0.0002)	ND(0.0002)	ND(0.0002)	ND(0.0002)	/	/	/
	Ħ	氯化氢	0.169	0.211	0.177	0.184	0.211	50	达标
	0.1	氨气	0.10	0.08	/	/	0.10	200	达标
	○1 张家	硫化氢	0.002	0.002	/	/	0.002	10	达标
	<b>公</b>	甲硫醇	ND(0.0002)	ND(0.0002)	ND(0.0002)	ND(0.0002)	/	/	/
	m4	氯化氢	0.188	0.190	/	/	0.190	50	达标
2025		氨气	0.09	0.07	/	/	0.09	200	达标
年8	O2	硫化氢	0.003	0.002	/	/	0.003	10	达标
月 26	双凤魏	甲硫醇	ND(0.0002)	ND(0.0002)	ND(0.0002)	ND(0.0002)	/	/	/
日	3/6	氯化氢	0.172	0.176	/	/	0.176	50	达标
		氨气	0.13	0.12	/	/	0.13	200	达标
	O3	硫化氢	0.002	0.003	/	/	0.003	10	达标
	尖山曹	甲硫醇	ND(0.0002)	ND(0.0002)	ND(0.0002)	ND(0.0002)	/	/	/
	П	氯化氢	0.216	0.214	/	/	0.216	50	达标

注: "ND"表明未检出或低于方法检出限

#### 9.3-3 环境空气日均值监测结果达标情况一览表(单位: mg/m³; 颗粒物: mg/m³)

监测	检测项目		检测结果		标准	达标
点位	巡侧-坝日	2025年8月23日	2025年8月24日	2025年8月25日	限值	分析
	颗粒物	0.147	0.156	0.138	0.3	达标
○ 1 FV	臭气浓度	<10	<10	<10	/	/
○1张 家岭	镉	0.000865	0.000299	0.00109	0.005	达标
- St m₹	铊	0.000108	0.0000729	0.000135	/	/
	锑	0.00142	0.000483	0.000785	/	/

监测	사용		检测结果		标准	达标
点位	检测项目	2025年8月23日	2025年8月24日	2025年8月25日	限值	分析
	砷	0.00823	0.00216	0.00545	0.006	达标
	铅	0.0158	0.00568	0.0139	0.5	达标
	铬	0.00450	0.00126	0.00347	/	/
	钴	0.000778	0.000278	0.000576	/	/
	铜	0.00731	0.00209	0.0108	/	/
	锰	0.0335	0.00996	0.0226	/	/
	镍	0.00251	0.000747	0.00167	/	/
	颗粒物	0.165	0.167	0.125	0.3	达标
	臭气浓度	<10	<10	<10	/	/
	镉	0.000580	0.000618	0.00184	0.005	达标
	铊	0.000108	0.000122	0.000219	/	/
	锑	0.00107	0.00107	0.00130	/	/
02双	砷	0.00431	0.00461	0.00995	0.006	达标
凤魏	铅	0.0121	0.0123	0.0233	0.5	达标
	铬	0.00383	0.00380	0.00577	/	/
	钴	0.000793	0.000792	0.000958	/	/
	铜	0.00530	0.00555	0.0196	/	/
	锰	0.0289	0.0435	0.0383	/	/
	镍	0.00189	0.00194	0.00275	/	/
	颗粒物	0.147	0.143	0.139	0.3	达标
	臭气浓度	<10	<10	<10	/	/
	镉	0.000570	0.000663	0.00115	0.005	达标
	铊	0.000111	0.000115	0.000167	/	/
	锑	0.00108	0.00111	0.000944	/	/
03尖	砷	0.00336	0.00477	0.00676	0.006	达标
山曹	铅	0.0101	0.0122	0.0171	0.5	达标
	铬	0.00246	0.00334	0.00466	/	/
	钴	0.000511	0.000674	0.000844	/	/
	铜	0.00458	0.00475	0.0140	/	/
	锰	0.0193	0.0233	0.0611	/	/
	镍	0.00140	0.00191	0.00243	/	/

注: "ND"表明未检出或低于方法检出限

表 9.3-4 监测期间气象参数测试一览表

时间	天气	气温 (℃)	气压(kPa)	风向	风速 (m/s)
2025年8月23日	晴	43	100.2	西	1.8
2023 平 8 月 23 日	晴	35	100.4	西南	2.2

时间	天气	气温 (℃)	气压(kPa)	风向	风速(m/s)
	晴	36	100.4	南	2.5
2025年8月24日	晴	40	100.5	南	2.1
2023 平 8 月 24 日	晴	39	100.4	西南	1.8
	晴	37	100.5	南	2.0
	晴	37	100.5	西	2.4
2025年8月25日	晴	39	100.6	西	2.0
2023 牛 8 月 23 日	晴	40	100.5	南	1.7
	晴	39	100.6	南	1.9

环境空气监测结果表明:验收监测期间,本项目环境空气监测点位〇1 张家岭、〇2 双凤魏、〇3 尖山曹中,二噁英毒性当量浓度均满足日本环境空气质量标准年均值不超过 0.6pg TEQ/m³的标准限值要求;氯化氢、氨、硫化氢小时均值浓度均满足《环境影响评价技术导则大气环境》(HJ2.2-2018)附录 D表 D.1标准限值要求;颗粒物、铅、镉、砷 24 小时平均浓度均满足《环境空气质量标准》(GB3095-2012)中二级标准限值要求。

#### 9.3.2 地下水环境

地下水监测结果见表 9.3-5。

表 9.3-5 地下水检测结果 [单位: mg/L; pH 无量纲; 总大肠菌群: MPN/L; 细菌总数: CFU/mL]

				检测结果				
监测 点位 	检测项目	☆1 厂区 地下水上 游	☆2 厂区 地下水下 游	☆3 厂区 地下水侧 向	★4 垃圾 库边界	☆5 渗滤 液处理站 下游	标准 限值	达标 分析 
	рН	7.4	7.9	7.8	7.5	7.4	6.5~ 8.5	达标
	氨氮	0.131	0.386	0.071	0.167	0.093	0.5	达标
	硝酸盐	0.97	1.19	1.05	1.45	1.60	20.0	达标
	亚硝酸盐	0.021	0.244	ND (0.003)	0.027	ND (0.003)	1.00	达标
2025 年 8	挥发酚	ND (0.0003)	ND (0.0003)	ND (0.0003)	ND (0.0003)	ND (0.0003)	0.002	达标
月 26	氰化物	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	0.05	达标
日	六价铬	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	0.05	达标
	总硬度	222	279	205	182	284	450	达标
	氟化物	0.311	0.365	0.346	0.285	0.466	1.0	达标
	铁	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.3	达标
	锰	ND (0.04)	0.389	0.043	0.021	0.042	0.10	达标
	钠	16.6	46.2	7.75	16.8	28.0	200	达标

				检测结果				
监测 点位	检测项目	★1 厂区 地下水上 游	★2 厂区 地下水下 游	★3 厂区 地下水侧 向	☆4 垃圾 库边界	☆5 渗滤 液处理站 下游	标准 限值	达标 分析
	汞	ND (0.00004)	ND (0.00004)	ND (0.00004)	ND (0.00004)	ND (0.00004)	0.001	达标
	砷	0.0032	0.0030	0.0028	0.0035	0.0029	0.01	达标
	镉	ND (0.00005)	0.00026	0.00012	0.00008	0.00018	0.005	达标
	铅	ND (0.00009)	0.00033	ND (0.00009)	ND (0.00009)	ND (0.00009)	0.01	达标
	溶解性总 固体	280	602	255	251	467	1000	达标
	高锰酸盐 指数	0.9	1.2	0.8	0.7	0.9	3.0	达标
	石油类	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	/	/
	硫酸盐	46.1	80.2	41.5	47.1	153	250	达标
	氯化物	21.6	170	21.7	35.2	64.5	250	达标
	总大肠菌 群	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	30	达标
	细菌总数	95	80	52	16	68	100	达标
	рН	7.5	8.0	7.7	7.5	7.3	6.5~8. 5	达标
	氨氮	0.150	0.238	0.088	0.372	0.345	0.5	达标
	硝酸盐	1.10	1.21	1.06	1.34	1.26	20.0	达标
	亚硝酸盐	ND (0.003)	ND (0.003)	ND (0.003)	0.051	0.027	1.00	达标
	挥发酚	ND (0.0003)	ND (0.0003)	ND (0.0003)	ND (0.0003)	ND (0.0003)	0.002	达标
	氰化物	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	0.05	达标
2025	六价铬	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	0.05	达标
年8	总硬度	209	272	188	192	314	450	达标
月 27	氟化物	0.265	0.347	0.324	0.472	0.544	1.0	达标
日	铁	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	0.3	达标
	锰	0.071	0.355	0.056	0.340	0.236	0.10	达标
	钠	6.19	48.9	6.90	15.7	36.1	200	达标
	汞	ND (0.00004)	ND (0.00004)	ND (0.00004)	ND (0.00004)	ND (0.00004)	0.001	达标
	砷	0.0033	0.0033	0.0041	0.0041	0.0038	0.01	达标
	镉	0.00005	0.00019	0.00011	0.00014	0.00013	0.005	达标
	铅	ND (0.00009)	ND (0.00009)	ND (0.00009)	ND (0.00009)	ND (0.00009)	0.01	达标

				检测结果				
监测 点位	检测项目	★1 厂区 地下水上 游	★2 厂区 地下水下 游	★3 厂区 地下水侧 向	☆4 垃圾 库边界	☆5 渗滤 液处理站 下游	标准 限值	达标 分析
	溶解性总 固体	270	573	252	260	493	1000	达标
	高锰酸盐 指数	0.9	1.0	0.9	0.8	0.9	3.0	达标
	石油类	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	/	/
	硫酸盐	53.2	84.8	40.6	46.8	152	250	达标
	氯化物	23.9	169	21.1	34.5	63.8	250	达标
	总大肠菌 群	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	30	达标
	细菌总数	34	38	24	76	97	100	达标

注: "ND"表明未检出或低于方法检出限

地下水环境质量监测结果表明:本次验收监测期间,本项目地下水监测点位 中各项因子检测结果均满足《地下水质量标准》(GB/T 14848-2017)中III类标 准限值要求。

### 9.3.3 土壤环境

土壤环境质量监测结果见表 9.3-6 和表 9.3-7。

表 9.3-6 土壤 (二噁英) 监测结果一览表 (单位: mg TEQ/kg)

采样时间	采样位置	检测项目	毒性当量浓度 检测结果	标准限值	达标 分析
2025-08-24 10:37-10:39	垃圾库旁	二噁英类	3.5×10 ⁻⁶	≤4×10 ⁻⁵	达标
2025-08-24 10:51-10:53	渗滤液处理站附近	二噁英类	1.9×10 ⁻⁶	≤4×10 ⁻⁵	达标
2025-08-24 11:34-11:36	张家岭农用地	二噁英类	5.1×10 ⁻⁶	/	/
2025-08-24 12:30-12:32	双凤魏农用地	二噁英类	2.0×10 ⁻⁶	/	/

表 9.3-7 土壤(不含二噁英)监测结果一览表(单位: mg/kg)

						,		
监测	检测 项目		检测结果					   达标
日期		単位	■1 垃圾库 旁	■2 渗滤液 处理站附近	■3 张家岭 农用地	■4 双凤魏 农用地	标准 限值	分析
	采样 深度	m	0.2	0.2	0.2	0.2	/	/
2025年	рН	/	8.54	8.38	8.41	8.31	/	/
8月24 日	汞	mg/kg	0.101	0.136	0.0537	0.180	38	达标
П	六价铬	mg/kg	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	5.7	达标
	铜	mg/kg	45	68	34	32	18000	达标

 监测	检测			检测	结果		标准	 - 达标
日期	项目	単位	■1 垃圾库 旁	■2 渗滤液 处理站附近	■3 张家岭 农用地	■4 双凤魏 农用地	限值	· 及你 分析 
	铅	mg/kg	53	79	46	38	800	达标
	砷	mg/kg	13.8	48.5	14.8	8.68	60	达标
	镉	mg/kg	0.55	1.15	0.03	0.20	65	达标
	镍	mg/kg	36	78	26	13	900	达标
	锰	mg/kg	708	$1.84 \times 10^{3}$	576	449	/	/
	钴	mg/kg	15.5	34.6	13.2	10.7	70	达标
	铊	mg/kg	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	/	/
	锑	mg/kg	1.82	4.03	1.85	1.91	180	达标

注: "ND"表示未检出或低于方法检出限;

土壤环境质量监测结果表明:本次验收监测期间,本项目土壤监测点位中各项因子检测结果均满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)第二类用地筛选值要求。

## 9.4 在线比对监测结果

武汉华正环境检测技术有限公司于 2025 年 9 月 3 日对武汉市绿色环保能源有限公司废气污染源 5#、6#生活垃圾焚烧炉有组织排放自动监测系统进行了在线比对监测,具体情况如下:

监测点位	对比因子	对比时间	手工监测结果	在线监测结果	手工监测均值	在线监测均值	绝对 误差	相对误差(%)	误差范 围要求	是否 满足 要求
	颗粒物 (mg/m³)	10:50-11:22	1.6	1.2	1.5	1.1	-0.4	/	≤±5 mg/m³	
5#生垃焚炉气		11:34-12:06	1.6	1.1						是
		12:26-12:58	1.4	1.1						
		13:09-13:41	1.8	1.1						
		13:52-14:24	1.2	1.1						
	湿度 (%)	10:35-10:40	22.60	24.02	22.44	23.31	/	3.9	≤±25%	是
		11:26-11:31	22.70	23.63						
		12:12-12:17	22.20	21.87						
		13:00-13:05	22.90	23.48						
		13:43-13:48	22.80	23.56						
	烟温(℃)	10:50-11:22	184.40	184.6	104.00	184.00 0	0	/	±3°C	是
		11:34-12:06	184.60	184.5	184.00					

表 9.4-1 在线比对监测结果一览表

监测 点位	对比因子	对比时间	手工监测结果	在线监测结果	手工监 测均值	在线监测均值	绝对 误差	相对误差(%)	误差范 围要求	是否 满足 要求
		12:26-12:58	184.30	183.1						
		13:09-13:41	183.80	183.3						
		13:52-14:24	182.90	185.5						
		10:50-11:22	12.80	12.21		13.47	/	3.0	≤±10%	是
	烟气冻油	11:34-12:06	12.10	13.24	13.08					
	烟气流速(m/s)	12:26-12:58	13.30	14.62						
		13:09-13:41	14.10	14.68						
		13:52-14:24	13.10	12.58						
		10:35-10:40	26	27.3		35.3	3.2	/	≤±17%	是
		11:26-11:31	24	28.5						
		12:12-12:17	28	32.7						
	一层从水	13:00-13:05	36	35.5	32.1					
	二氧化硫 (mg/m³)	13:43-13:48	41	43.7						
	(IIIg/III )	14:26-14:31	46	49.8						
		14:35-14:40	32	33						
		14:48-14:53	31	38.3						
		14:55-15:00	25	29.3						
	氮氧化物 (mg/m³)	10:35-10:40	86	93.4	94.5	101.8	/	7.7	≤±30%	是
		11:26-11:31	117	113.7						
		12:12-12:17	99	106.4						
		13:00-13:05	105	113.7						
		13:43-13:48	102	112.4						
		14:26-14:31	90	96.2						
		14:35-14:40	84	94.7						
		14:48-14:53	86	94.3						
		14:55-15:00	81	91.1						
		10:35-10:40	6.07	6.33	6.17	/	/	/	相对准 确度 <15%	是
		11:26-11:31	5.94	6.03						
		12:12-12:17	6.70	6.71						
	怎么是	13:00-13:05	6.16	6.38						
	氧含量 (%)	13:43-13:48	6.35	6.4						
	(70)	14:26-14:31	6.07	5.62						
		14:35-14:40	6.46	6.67						
		14:48-14:53	5.30	5.58						
		14:55-15:00	6.48	6.71						
	氯化氢	10:51-11:06	8.3	7.7	10.5	6.2	-4.3	/	≤±	是

<u>监测</u> 点位	对比因子	对比时间	手工监测结果	在线监测结果	手工监 测均值	在线监测均值	绝对 误差	相对误 差(%)	误差范 围要求	是否 满足 要求
	(mg/m³)	11:11-11:26	9.6	7.7					7mg/m³	
		11:35-11:50	11.3	6.0						
		12:21-12:36	8.4	5.0						
		12:57-13:12	11.9	5.2						
		13:35-13:50	10.4	6.2						
		13:55-14:10	11.0	6.0						
		14:22-14:37	10.1	6.1						
		14:45-15:00	13.6	5.8						
		10:35-10:40	ND(0)	1.6						
		11:26-11:31	ND(0)	1.4	0.01	1.3	1.3	/		
		12:12-12:17	ND(0)	1.1						
	- 11 mili	13:00-13:05	ND(0)	1.3						
	一氧化碳	13:43-13:48	ND(0)	1.2					$\leq \pm 8$ mg/m ³	是
	(mg/m³)	14:26-14:31	ND(0)	1.2					omg/m²	
		14:35-14:40	ND(0)	1.4						
		14:48-14:53	ND(0.1)	1.4						
		14:55-15:00	ND(0)	1						
	颗粒物 (mg/m³)	10:44-11:16	1.4	1.3	1.5	1.2	-0.3	/		
		12:02-12:34	1.7	1.2						
		12:42-13:14	1.6	1.2					≤±5	是
		13:22-13:54	1.6	1.2					mg/m³	
		14:03-14:35	1.2	1.2						
	湿度 (%)	10:27-10:32	18.75	20.64	20.45	21.33	/	4.3	≤±25%	
		11:55-12:00	20.41	21.03						
6#生		12:34-12:39	21.26	22.14						是
活垃		13:15-13:20	19.67	19.88						
圾焚		13:55-14:00	22.15	22.95						
烧炉	烟温(℃)	10:44-11:16	179.10	178.3	180.18	182.10	1.9	/		
排气		12:02-12:34	178.00	181.8						
筒		12:42-13:14	180.10	183.2					±3℃	是
		13:22-13:54	181.40	183.4						
		14:03-14:35	182.30	183.8						
	烟气流速:(m/s)	10:44-11:16	15.37	13.76		13.95	/	-5.4		
		12:02-12:34	14.07	13.81						
		12:42-13:14	14.68	14.73	14.74				≤±10%	是
		13:22-13:54	14.67	14.08						
		14:03-14:35	14.92	13.37						

监测 点位	对比因子	对比时间	手工监测结果	在线监测结果	手工监测均值	在线监测均值	绝对 误差	相对误 差(%)		是否 满足 要求
		10:27-10:32	19	19.1					≤±17%	是
		11:18-11:23	18	21						
		11:55-12:00	7	20.4	1	26.1	3.9	/		
	一层儿水	12:34-12:39	9	11.7						
	二氧化硫(mg/m³)	13:15-13:20	7	9.4	22.2					
	(IIIg/III [*] )	13:55-14:00	32	39.9						
		14:02-14:07	21	19.5						
		14:09-14:14	34	41						
		14:16-14:21	53	53.1						
		10:27-10:32	119	110.9						
		11:18-11:23	100	96.4		85.8	/	-7.1	≤±30%	是
		11:55-12:00	81	78.1						
	<b>声景 / J. Ha</b>	12:34-12:39	94	90	92.4					
	氮氧化物 (mg/m³)	13:15-13:20	63	65.4						
	(IIIg/III [*] )	13:55-14:00	95	84						
		14:02-14:07	94	84.4						
		14:09-14:14	93	81.3						
		14:16-14:21	94	81.6						
		10:27-10:32	7.94	7.72		/	/	/	相对准 确度 ≤15%	是
		11:18-11:23	7.21	7.32	7.46					
		11:55-12:00	7.97	7.98						
	<b>复</b>   <b>2</b>   <b>2</b>   <b>3</b>   <b>3</b>	12:34-12:39	7.63	7.58						
	氧含量 (%)	13:15-13:20	9.33	9.44						
	(70)	13:55-14:00	6.49	6.24						
		14:02-14:07	6.64	7.28						
		14:09-14:14	7.19	6.7						
		14:16-14:21	6.77	7.08						
		10:38-10:53	23.0	14.4		21.7	/	-6.1	≤± 7mg/m³	是
		10:56-11:11	24.0	9.3						
		11:26-11:41	16.3	20.2						
	気ル気	11:45-12:00	25.2	16.5	23.1					
	氯化氢 (mg/m³)	12:15-12:30	29.7	10.6						
		12:42-12:57	21.7	21.0						
		13:22-13:37	21.9	24.3						
		13:39-13:54	22.1	54.6						
		14:04-14:19	24.1	54.0						

 监测 点位	对比因子	对比时间	手工监测结果	在线监测结果	手工监测均值	在线监测均值	绝对 误差	相对误 差(%)		是否 满足 要求
		10:27-10:32	ND(0.4)	0.8						
		11:18-11:23	16	11.8						
		11:55-12:00	ND(0)	0.2						
	一氧化碳	12:34-12:39	ND(0)	0.2						
	章(化恢 (mg/m³)	13:15-13:20	ND(0.8)	1.7	3.8	4.0	0.2	/	$\frac{\leq \pm}{8 \text{mg/m}^3}$	是
	(mg/m/)	13:55-14:00	16	19.2					omg/m	
		14:02-14:07	ND(0.9)	0.5						
		14:09-14:14	ND(0.1)	1						
		14:16-14:21	ND(0)	0.2						

由比对监测结果可知,5#、6#生活垃圾焚烧炉有组织排放自动监测系统颗粒物、流速、温度、含氧量、一氧化碳、二氧化硫、氮氧化物和氯化氢比对监测结果均符合《固定污染源烟气(SO₂、NO_x、颗粒物)排放连续监测技术规范》(HJ75-2017)及生态环境部办公厅文件《关于加强生活垃圾焚烧发电厂自动监控和监管执法工作的通知》(环办执法〔2019〕64 号)的要求。

# 10、环境管理检查

## 10.1 建设项目执行国家建设项目环境管理制度情况

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造 (炉排炉改造)项目立项、环评、试生产手续齐全,落实了环保设施与主体工程 同时设计、同时施工、同时投产使用的环境保护"三同时"制度。

## 10.2 环保机构和环境管理制度检查

武汉市绿色环保能源有限公司已制定了各类环保管理制度(见附件 19), 针对废水、废气处理的相关环境风险和环境污染,做到预防为主、应急得当、处 理及时,严控和杜绝各类环境污染事故的产生。企业已根据本项目内容对排污许 可证进行了更新,并在武汉市生态环境局江夏区分局进行了备案。

项目设有环保专职人员,环保责任制明确,实施环境保护与各类设备的统一管理,定期对员工进行环境教育和环保技术培训。

# 10.3 建设项目实施过程中环境监察情况

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造 (炉排炉改造)项目于 2022 年 12 月开工,于 2025 年 7 月建设完成并投入调试 及试运行,经走访调查及资料收集情况表明,项目施工期及试运行期间未发生过 环境纠纷、污染投诉及环保处罚情况。

# 10.4 环境风险防范、突发环境事故应急措施及预案

本项目存在一定的风险,但风险度在可接受的范围以内。建设单位于 2025 年 3 月根据本项目情况对《武汉市绿色环保能源有限公司突发环境事件应急预 案》进行了修订,并在武汉市生态环境局江夏区分局进行了备案(附件 10,备 案编号: 420115-2025-015-M),公司成立了环境污染事故应急处理领导小组,负责全公司环境污染事故应急处理的组织、指导、协调、事故调查分析与处理、向上级主管部门报告、内部督促整改和考核等工作。日常工作中,加强预防及预警,一旦发生环境污染事故,立即启动应急预案,保障整个应急处理工作有序进行。公司具备了防止重大事故的能力,从设备的采用到严格安全管理系统的建立、安全部门的审核等方面措施基本到位。

### 10.5 卫生防护距离落实情况

根据中国电力工程顾问集团中南电力设计院有限公司《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书》对本项目防护距离的要求,项目应以用地红线为边界设置 300m 环境防护距离。

根据现场踏勘情况表明,本项目已按要求落实了300米环境防护距离要求, 在环境防护距离无居民住宅、学校、医院等环境敏感建筑。

# 10.6 环评批复主要意见及批复落实情况

项目环评及批复意见落实情况见表 10.6-1:

表 10.6-1 环评批复要求落实情况一览表

序号	环评批复要求	落实情况
	加强项目施工期间的环境教育与管理,文	
	明施工,规范操作,合理安排作业时间,降低	己落实。
	施工过程污水、扬尘、噪声等对周边环境的影	本项目于2022年12月开工,于2025年7月
1	响。加强现有设施、设备拆除活动污染防治,	建设完成并投入调试及试运行,经走访调查及
1	避免造成土壤和地下水污染。加强项目建设期	资料收集情况表明,项目施工期及试运行期间
	间生活垃圾处理工作的衔接, 既要避免生活垃	未发生过环境纠纷、污染投诉及环保处罚情
	圾处理工作受到影响,也要杜绝超标排放和恶	况。
	臭气体无组织排放导致周边环境污染。	

序号 环评批复要求 落实情况 己落实。 建设单位按照"雨污分流"原则建设项目 排水系统。项目按照"雨污分流"原则建设排 水系统, 厨余垃圾渗滤液经"隔油池+两级气 按照"雨污分流"原则建设项目排水系统。 浮"除油预处理,生活污水经化粪池预处理后, 按《报告书》要求分别建设渗滤液处理站、 与生活垃圾渗滤液、化验室废水、冲洗废水、 RO反渗透系统、渗滤液收集池、初期雨水收 初期雨水等一同进入渗滤液处理站深度处理, 集池等设施。项目运行产生的废水应分质处 本期工程新建处理能力为1200m3/d 的渗滤液 理、优先回用,垃圾渗滤液、化验室废水、垃 处理站, 采用"预处理+厌氧+两级A/O+UF+ 圾运输车辆与卸料大厅冲洗水、收集的初期雨 纳滤(NF)+RO(针对回用部分进行深度处 水等排入渗滤液处理站处理,渗滤液处理站浓 理)"处理工艺,处理后的清液满足相关回用 液回喷至焚烧炉, 部分清液通过RO反渗透系 水要求后回用于除渣机、飞灰固化、烟气净化、 统处理满足有关标准要求后分别回用于厂区 石灰制浆、厂区冲洗及绿化等, 未回用的清液 冲洗以及出渣、飞灰固化、烟气净化、石灰制 与循环水排水一并接入市政污水管网,后进入 2 浆等工段,未回用的清液与经化粪池预处理的 金口污水处理厂深度处理, 尾水排入长江(武 生活污水、循环冷却系统外排废水一并通过市 汉段)。 政污水管网进入金口污水处理厂进一步处理。 废水监测结果表明:验收监测期间,本项 外排废水应满足《污水综合排放标准》 目废水总排口DW003、渗滤液处理站排口 (GB8978-1996)表4中三级标准限值要求(其 DW004中总汞、总镉、总铬、六价铬、总砷、 中重金属类污染物应满足《生活垃圾填埋场污 总铅、粪大肠菌群数日均排放浓度最大值均满 染控制标准》<GB16889-2008>表2限值要求, 足《生活垃圾填埋场污染控制标准》 氨氮、总氮、总磷等污染物应满足《污水排入 (GB16889-2024) 表2标准限值要求; pH、 城镇下水道水质标准》<GB/T31962-2015>表1 COD、BOD5、SS、动植物油日均排放浓度最 中A级限值要求)。规范设置厂区废水总排口, 大值均满足《污水综合排放标准》 按要求安装在线监控装置并与管理部门联网。 (GB8978-1996) 表4三级标准限值要求: 氨 氮、总氮、总磷日均排放浓度最大值均满足《污 水排入城镇下水道水质标准》 (GB/T31962-2015)表1中A级标准限值要求。 序号 环评批复要求 落实情况 己落实。 严格落实各项废气污染防治措施。加强焚 建设单位已按要求严格落实了各项废气 烧炉运行管理,严格控制焚烧炉温度、停留时 污染防治措施,焚烧废气排气筒已安装在线监 间等工况条件,有效减少二噁英等污染物生 控装置并与管理部门联网。 成。垃圾库、卸料大厅、渗滤液处理站、生活 有组织废气监测结果表明:验收监测期 垃圾预处理车间、厨余垃圾预处理车间等区域 间,武汉城市生活垃圾焚烧发电厂生活垃圾分 产生的恶臭气体通过抽风系统送至焚烧炉焚 类资源化预处理及环保提标改造(炉排炉改 烧处理; 焚烧废气采用 SNCR 脱硝+半干法脱 造)项目5#生活垃圾焚烧炉有组织废气排放口 酸+干法脱酸+活性炭吸附+布袋除尘+SCR 脱 DA010、6#生活垃圾焚烧炉有组织废气排放口 硝设施处理,达到《生活垃圾焚烧污染控制标 DA009氮氧化物排放浓度均满足《武汉市人民 准》(GB18485-2014)表4限值要求(其中 政府关于印发武汉市2020 年大气污染防治工 氦氧化物执行 100 毫克/立方米限值要求) 后 作方案的通知》中"垃圾焚烧发电企业"限值 通过80米排气筒高空排放。排气筒设置为多 要求; 颗粒物、二氧化硫、氯化氢、汞及其化 筒集束式,并按规范要求设置采样孔和采样平 合物(以Hg 计)、镉、铊及其化合物(以Cd+Tl 台,焚烧废气排气筒应安装在线监控装置并与 计)、锑、砷、铅、铬、钴、铜、锰、镍及其 管理部门联网。 化合物(以Sb+As+Pb+Cr+Co+Cu+Mn+Ni 落实厨余垃圾处理、垃圾贮存、渗滤液处 计)、二噁英类监测结果均能满足《生活垃圾 理及物料输送过程中的无组织排放废气防治 焚烧污染控制标准》(GB18485-2014)表4标 措施。垃圾库应设置活性炭吸附除臭应急设 准限值要求。 施, 生活垃圾预处理车间、厨余垃圾预处理车 无组织废气监测结果表明: 验收监测期间 间、卸料大厅、垃圾库、渗滤液处理站产臭单 天气状况晴好,符合验收监测对天气条件的要 元应保持密闭和微负压状态,垃圾运输栈桥应 求;项目厂界上下风向无组织废气监测点位 采取全密闭设计,确保厂界和厂区内无组织排 中,颗粒物浓度满足《大气污染物综合排放标 放污染物分别满足《恶臭污染物排放标准》 准》(GB16297-1996)表2中无组织排放浓度 (GB14554-1993)、《大气污染物综合排放 监控限值要求; 氨、硫化氢、臭气浓度监测结 标准》(GB16297-1996). 果满足《恶臭污染物排放标准》(GB14554-93) 表1中二级新扩改建厂界标准限值要求。 落实地下水和土壤污染防治措施,按照规 己落实。 范要求对厂区地面进行分区防渗处理,加强各 建设单位已按要求落实了各项地下水和 类设施及管线日常巡查,避免对地下水、土壤 土壤污染防治措施,按照规范要求对厂区地面 4 环境产生不利影响;按《报告书》要求定期组 进行分区防渗处理,加强各类设施及管线日常 织开展地下水、土壤环境质量的跟踪监测工 巡查,并定期组织开展地下水、土壤环境质量 作。 的跟踪监测工作。 已落实。 建设单位已按《环评报告》要求落实了各 优先选用低噪声设备,对噪声源合理布局 项降噪措施。 并采取隔音、消声等有效降噪措施,落实《报 噪声监测结果表明:验收监测期间,项目 5 告书》提出的声屏障建设要求,确保厂界噪声 厂界噪声监测点位(N1~N8)昼间、夜间噪 满足《工业企业厂界环境噪声排放标准》 声监测结果均满足《工业企业厂界环境噪声排 (GB12348-2008) 相关标准要求。 放标准》(GB 12348-2008)中2类标准限值要 求。

序号	环评批复要求	落实情况
6	项目应按"资源化、减量化、无害化"处置原则,落实《报告书》提出的各类固体废物的分类收集、处置措施。按照环保、安全有关规范要求建设飞灰固化物暂存场所及危险废物暂存场所。项目运行产生的飞灰先经固化稳定化处置,满足《生活垃圾填埋场污染控制标准》(GB16889-2008)有关要求后外运至飞灰填埋场或生活垃圾填埋场专区填埋;落实危险废物转移联单制度,废矿物油、废布袋、废蓄电池、脱硝系统废催化剂、化验室废试剂等危险废物分类收集暂存后定期交有资质的单位进行妥善处置;其它固体废物应采取入炉焚烧或综合利用等方式妥善处置。	已落实。 项目除臭系统废活性炭、水处理系统废膜暂未产生,后期产生后与工作人员生活垃圾及渗滤液处理站污泥一同入炉焚烧处理;磁选按产生的惰性物质外售综合利用;项目炉渣目前外售江苏磊航环保科技有限公司综合利用,后期待老厂区"炉渣综合利用项目"建成后自行综合利用;项目飞灰经厂内"鳌合"处理后由武汉凯路运输有限公司外运青山北湖飞灰填埋场填埋处理。 废机油、废布袋、废脱硝催化剂、废铅蓄电池均属于危险废物,厂区内已设置了危废暂存间临时存放,危废暂存间按照《危险废物贮存污染控制标准》(GB 18597-2023)、《危险废物识别标志设置技术规范》(HJ 1276-2022)等规范和标准要求进行建设,危废暂存后定期交由湖北润恒环境科技有限公司清运处理。 采取上述治理措施后,固体废物的综合利用率、安全处置率可达100%,不会对环境构成污染影响。

# 11、验收监测结论及建议

## 11.1 验收监测结论

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造 (炉排炉改造)项目(以下简称"三期工程")建成后全厂生活垃圾焚烧处理能力保持 2000 吨/d 不变,将优先保证生活垃圾的处理,在不影响生活垃圾处理的前提下进行一般工业固体废弃物的掺烧处理,项目严格控制掺烧比例,一般工业固体废弃物掺烧比例不超过焚烧总量的 30%,其中污泥掺烧比例不高于 10%。新增生活垃圾预处理能力 2600 吨/d、厨余垃圾预处理能力 500 吨/d。

三期工程于 2022 年 12 月开工,于 2025 年 7 月建设完成并投入调试及试运行。目前,三期工程各类生产设备和环保设施均运行正常,具备竣工验收监测条件。

### 11.1.1 环保设施调试运行效果

(1) 废气

#### 1)有组织废气治理措施

垃圾及一般工业固体废物(含污泥)在焚烧过程中产生的烟气,其中的主要污染物为粉尘(颗粒物)、酸性气体(HCl、HF、SOx等)、重金属(Hg、Pb、Cr等)、一氧化碳和有机剧毒性污染物(二噁英、呋喃等)等;

本项目烟气净化采用"SNCR 脱硝+半干法脱酸+干法脱酸+活性炭吸附+布袋除尘器+SCR 脱硝"工艺。在焚烧炉内喷入氨水溶液,脱除烟气中的部分 NOx,随后烟气进入烟道,对布置其中的高温过热器、低温过热器、省煤器进行放热,烟气温度降至 200℃左右。降温后的烟气进入旋转喷雾式半干法反应塔,喷雾干燥吸收法吸收剂采用 Ca(OH)2 浆液,烟气从喷雾干燥吸收塔的上部进入,下部流出烟气中的 SO2 及 HCl 等酸性气体通过与 Ca(OH)2 反应后得到脱除。在进入布袋除尘器之前中喷入活性炭、Ca(OH)2 粉,以吸附烟气中的重金属和二噁英类物质,进一步脱除酸性气体,随后通过布袋除尘,将烟气中的灰尘、反应生成物加以捕捉。经除尘后的烟气进入 SCR 反应塔,在塔内通过 GGH+SGH 将烟气温度加热至 180~250℃以达到 SCR 催化剂的工作温度,在 SCR 催化剂的作用下与

氨水进行反应,进一步去除烟气中的 NOx,烟气经处理达标后通过引风机进入80m烟囱后排入大气。

- 4、5号垃圾库各设置一套活性炭除臭系统,在垃圾焚烧发电厂焚烧炉检修时使用。
  - 2) 无组织废气控制措施

项目无组织废气主要来自进厂的原始垃圾在卸料过程中和堆放在垃圾库内散发出的恶臭以及污水处理过程中产生的恶臭气体,其主要成分为 H₂S、NH₃等。

本项目采取的恶臭控制措施主要包括:

- ①采用新型密封、防渗漏的垃圾运输专用车,减少运输过程中的恶臭污染;
- ②卸料大厅设计为微负压密闭结构,卸车平台大门装设空气幕隔离大厅内外空气流动,防止卸料厅臭气外逸;
- ③设置自动卸料门,使垃圾库密闭化,无车卸料时保证垃圾库密封,维持垃圾库负压,减少灰尘飞扬和恶臭外逸;
- ④垃圾库顶部设置带过滤网的一次风抽气口,将臭气抽入炉膛内作为焚烧炉 助燃空气,同时使垃圾库内距离风口最远处的负压在-10Pa 以上,以防恶臭外逸;
- ⑤在渗滤液调节池和厌氧系统设置排风系统,将调节池内的恶臭气体送入风管,使调节池处于负压,防止臭气逸散。风管接至垃圾库,与垃圾库臭气一起进入焚烧炉处理:
- ⑥厌氧池产生的沼气引入焚烧炉进行助燃,非正常工况采用沼气燃烧系统直接燃烧;
- ⑦从源头控制,即规范垃圾库的操作管理,利用抓斗对垃圾进行搅拌和翻动,可使进炉垃圾热值均匀,且可避免厌氧发酵,减少恶臭产生。

有组织废气监测结果表明:验收监测期间,武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目5#生活垃圾焚烧炉有组织废气排放口DA010、6#生活垃圾焚烧炉有组织废气排放口DA009氮氧化物排放浓度均满足《武汉市人民政府关于印发武汉市2020年大气污染防治工作方案的通知》中"垃圾焚烧发电企业"限值要求;颗粒物、二氧化硫、氯化氢、汞及其化合物(以Hg计)、镉、铊及其化合物(以Cd+Tl计)、锑、砷、铅、铬、钴、铜、锰、镍及其化合物(以Sb+As+Pb+Cr+Co+Cu+Mn+Ni计)、二噁

英类监测结果均能满足《生活垃圾焚烧污染控制标准》(GB18485-2014)表 4 标准限值要求。

无组织废气监测结果表明:验收监测期间天气状况晴好,符合验收监测对天气条件的要求;项目厂界上下风向无组织废气监测点位中,颗粒物浓度满足《大气污染物综合排放标准》(GB16297-1996)表2中无组织排放浓度监控限值要求;氨、硫化氢、臭气浓度监测结果满足《恶臭污染物排放标准》(GB14554-93)表1中二级新扩改建厂界标准限值要求。

#### (2) 废水

本项目主要废水包括:生活垃圾渗滤液、化验室废水、冲洗废水、厨余垃圾 渗滤液、初期雨水、生活污水、化学水处理站系统废水、锅炉排污水、循环水排 水。

项目按照"雨污分流"原则建设排水系统,厨余垃圾渗滤液经"隔油池+两级气浮"除油预处理,生活污水经化粪池预处理后,与生活垃圾渗滤液、化验室废水、冲洗废水、初期雨水等一同进入渗滤液处理站深度处理,本期工程新建处理能力为1200m³/d 的渗滤液处理站,采用"预处理+厌氧+两级A/O+UF+纳滤(NF)+RO(针对回用部分进行深度处理)"处理工艺,处理后的清液满足相关回用水要求后回用于除渣机、飞灰固化、烟气净化、石灰制浆、厂区冲洗及绿化等,未回用的清液与循环水排水一并接入市政污水管网,后进入金口污水处理厂深度处理,尾水排入长江(武汉段)。

废水监测结果表明:验收监测期间,本项目废水总排口 DW003、渗滤液处理站排口 DW004 中总汞、总镉、总铬、六价铬、总砷、总铅、粪大肠菌群数日均排放浓度最大值均满足《生活垃圾填埋场污染控制标准》(GB16889-2024)表 2 标准限值要求; pH、COD、BOD5、SS、动植物油日均排放浓度最大值均满足《污水综合排放标准》(GB8978-1996)表 4 三级标准限值要求; 氨氮、总氮、总磷日均排放浓度最大值均满足《污水排入城镇下水道水质标准》

(GB/T31962-2015) 表 1 中 A 级标准限值要求。

#### (3) 噪声

本工程噪声源主要来自生产设备的运行及修理、运输原料车辆进出厂区产生的噪声。

建设单位对噪声采取的防治措施包括:

- ①优先考虑采用符合国家规定的噪声标准的设备,同类设备优先选择噪声较低的设备;
  - ②对汽轮机、给水泵等装设隔声罩,对空压机间进行厂房隔声
- ③在锅炉排汽口、送风机吸风口、空压机送风口等处安装消声器,以减少空气动力性噪声;
  - ④对大型设备采用基础减震处理;
  - ⑤修筑实体墙声屏障等。

在采取以上控制措施后,本项目厂界噪声不会对周边环境产生明显影响。

噪声监测结果表明:验收监测期间,项目厂界噪声监测点位(N1~N8)昼间、夜间噪声监测结果均满足《工业企业厂界环境噪声排放标准》(GB 12348-2008)中2类标准限值要求。

#### (4) 固体废物

本项目固体废物包括工作人员生活垃圾、剩滤液处理站污泥、除臭系统废活性炭、水处理系统废膜、磁选产生的惰性物质、炉渣、飞灰、废机油、废布袋、废脱硝催化剂、废铅蓄电池等。

项目除臭系统废活性炭、水处理系统废膜暂未产生,后期产生后与工作人员生活垃圾及渗滤液处理站污泥一同入炉焚烧处理;磁选按产生的惰性物质外售综合利用;项目炉渣目前外售江苏磊航环保科技有限公司综合利用,后期待老厂区"炉渣综合利用项目"建成后自行综合利用;项目飞灰经厂内"鳌合"处理后由武汉凯路运输有限公司外运青山北湖飞灰填埋场填埋处理。

废机油、废布袋、废脱硝催化剂、废铅蓄电池均属于危险废物,厂区内已设置了危废暂存间临时存放,危废暂存间按照《危险废物贮存污染控制标准》(GB 18597-2023)、《危险废物识别标志设置技术规范》(HJ 1276-2022)等规范和标准要求进行建设,危废暂存后定期交由湖北润恒环境科技有限公司清运处理。

采取上述治理措施后,固体废物的综合利用率、安全处置率可达 100%,不会 对环境构成污染影响。

固体废物监测结果表明:验收监测期间,本项目飞灰固化车间固化物各项指标浓度满足《生活垃圾填埋场污染控制标准》(GB16889-2024)6.3及表1标准

限值要求; 炉渣热灼减率满足《生活垃圾焚烧污染物控制标准》(GB18485-2014) 表 1 中标准限值要求。

#### (5) 总量控制

#### 1) 大气污染物总量控制

本期工程将厂区一期工程原有的 3 台 400t/d 循环流化床锅炉(1#、2#、3#炉)置换升级为 2 台 600t/d 机械炉排炉(5#、6#炉),不新增垃圾焚烧处理能力。根据企业排污许可、本期项目环境影响报告书及其批复,本期工程实施后,全厂有组织废气污染源为 4#、5#、6#焚烧炉,不新增大气污染物总量控制指标,全厂大气污染物许可排放总量为二氧化硫: 150t/a,氮氧化物: 903.34t/a,烟粉尘(颗粒物): 76.57t/a。

根据本次验收监测结果核算,本期工程实施后,全厂大气污染物排放总量为二氧化硫 29.20t/a, 氮氧化物 326.22t/a, 颗粒物 40.28t/a, 满足企业排污许可、本期项目环境影响报告书及其批复要求。

#### 2) 水污染物总量控制

由于厂区原有项目在环评批复过程中循环水排水认定为清净下水,故原有项目无水污染物总量指标。本期项目实施后,各类废(污)水经处理后接入市政污水管网,进入金口污水处理厂。项目外排口水质满足《关于接收处理武汉绿色环保能源有限公司纳管污水的情况说明》要求的标准。废(污)水总量按照水量乘以金口污水处理厂的设计出水浓度进行核算。

根据武汉市生态环境局《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目污染物总量指标的审核意见》(武环函〔2021〕88号),本工程实施后新增水污染物总量控制指标 COD17.5t/a、氨氮 1.75t/a,总量指标替代来源为 2021 年黄家湖污水处理厂扩建项目形成的削减量。

建设单位根据省人民政府办公厅印发《湖北省主要污染物排污权有偿使用和交易办法》(鄂政办发〔2016〕96号)有关规定,已于2021年11月2日通过湖北省排污权交易获得水污染物总量控制指标COD17.5t/a、氨氮1.75t/a(见附件5)。

### 11.1.2 环境质量监测情况

环境空气监测结果表明:验收监测期间,本项目环境空气监测点位〇1 张家岭、〇2 双凤魏、〇3 尖山曹中,二噁英毒性当量浓度均满足日本环境空气质量标准年均值不超过 0.6pg TEQ/m³的标准限值要求;氯化氢、氨、硫化氢小时均值浓度均满足《环境影响评价技术导则大气环境》(HJ2.2-2018)附录 D表 D.1标准限值要求;颗粒物、铅、镉、砷 24 小时平均浓度均满足《环境空气质量标准》(GB3095-2012)中二级标准限值要求。

地下水环境质量监测结果表明:本次验收监测期间,本项目地下水监测点位中各项因子检测结果均满足《地下水质量标准》(GB/T 14848-2017)中III类标准限值要求。

土壤环境质量监测结果表明:本次验收监测期间,本项目土壤监测点位中各项因子检测结果均满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)第二类用地筛选值要求。

### 11.1.3 验收监测总结论

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造 (炉排炉改造)项目基本落实了环评及批复中规定的各项环保措施,竣工验收监测条件符合《建设项目竣工环境保护验收暂行办法》的相关要求,主要污染物实现了达标排放,建议本工程通过竣工环境保护验收。

# 11.2 建议

- (1)对员工进行经常性的环保教育和培训,提高员工的环保意识和操作技能。
- (2)进一步建立健全环保档案,包括环评报告、竣工环保验收报告、污染源监测报告、环保设备及运行记录以及其它环境统计资料。
  - (3) 进一步完善危废暂存间通排风措施,强化台账管理工作。

### 附件 1: 验收监测委托书

### 建设项目竣工环境保护验收监测委托书

湖北鑫承胜咨询有限公司:

我司新建生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)于 2022 年 12 月开工,并于 2025 年 07 月竣工投入试运行。该项目已按照环境保护行政主管部门的审批要求,严格落实各项环境保护措施,污染防治设施与主体工程同时投入试运行。根据国务院令第 682 号《建设项目环境保护管理条例》、国环规环评[2017]4 号《建设项目竣工环境保护验收暂行办法》等相关规定,特委托你公司对本项目进行建设项目竣工环境保护验收监测。

委托单位(盖章): 武汉市绿色环

抽

址: 湖北省武汉市

\$201150114373

联 系 人: 肖建

联 系 电 话: 15827514408

委 托 日 期: 2025年07月

附件 2:《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书的批复》(武环审 [2021]13 号)

附件1

# 武汉市生态环境局文件

武环审[2021]13号

# 市生态环境局关于武汉城市生活垃圾焚烧发电厂 生活垃圾分类资源化预处理及环保提标改造 (炉排炉改造)项目环境影响报告书的批复

武汉市绿色环保能源有限公司:

你公司报送的《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书》(以下简称《报告书》)及相关资料已收悉。经研究,现批复如下:

一、你公司拟投资 73895 万元,在武汉市江夏区郑店街雷竹村及金口街姚湾村实施武汉城市生活垃圾焚烧发电厂生活垃圾 分类资源化预处理及环保提标改造(炉排炉改造)项目,项目由

- 1 -

武汉城市生活垃圾分类资源化预处理项目(项目代码 2018-4201 15-44-02-077686)、武汉城市生活垃圾焚烧发电环保提标改造 项目(项目代码 2019-420115-44-03-050705)、长山口厨余垃 圾焚烧协同处理工程项目(项目代码 2020-420115-77-02-06408 9) 等 3 个部分组成。项目主要建设内容包括: 在现有厂区内拆 除原有垃圾预处理车间、垃圾运输栈桥、卸料大厅、原生垃圾库、 飞灰固化物暂存车间、危险废物暂存间、初期雨水收集池,将3 台 400 吨/日循环流化床锅炉置换升级为 2 台 600 吨/日机械炉排 炉,并配套建设全密闭运输栈桥、初期雨水收集池、烟气净化系 统、点火及助燃系统、飞灰仓、渣库、飞灰固化物养护和暂存车 间、飞灰固化系统等配套公辅设施;在扩建厂区内新建生活垃圾 卸料大厅、生活垃圾预处理车间、厨余垃圾预处理车间以及原生 垃圾库、成品生活垃圾库、垃圾运输系统、渗滤液收集池、渗滤 液处理系统、事故水池、初期雨水池、惰性物料暂存间、危险废 物暂存间、事故除臭系统等配套设施。项目建成后,全厂生活垃 圾焚烧处理能力保持2000吨/日不变,新增生活垃圾预处理能力 2600 吨/日、厨余垃圾预处理能力 500 吨/日(详见《报告书》)。 在全面落实《报告书》中提出的各项污染防治措施和风险防范措 施的基础上, 项目所产生的环境影响可以得到控制, 从环境保护 角度,同意你公司按照《报告书》中所列项目的建设内容、规模、

地点和污染防治措施进行项目建设。

- 二、同意《报告书》采用的评价标准,该《报告书》可作为项目环保设计和环境管理的依据。
- 三、在实施建设项目时, 你公司应重点做好以下环保工作:
- (一)加强项目施工期间的环境教育与管理,文明施工,规范操作,合理安排作业时间,降低施工过程污水、扬尘、噪声等对周边环境的影响。加强现有设施、设备拆除活动污染防治,避免造成土壤和地下水污染。加强项目建设期间生活垃圾处理工作的衔接,既要避免生活垃圾处理工作受到影响,也要杜绝超标排放和恶臭气体无组织排放导致周边环境污染。
- (二)按照"雨污分流"原则建设项目排水系统。按《报告书》要求分别建设渗滤液处理站、RO反渗透系统、渗滤液收集池、初期雨水收集池等设施。项目运行产生的废水应分质处理、优先回用,垃圾渗滤液、化验室废水、垃圾运输车辆与卸料大厅冲洗水、收集的初期雨水等排入渗滤液处理站处理,渗滤液处理站浓速回喷至焚烧炉,部分清液通过RO反渗透系统处理满足有关标准要求后分别回用于厂区冲洗以及出渣、飞灰固化、烟气净化、石灰制浆等工段,未回用的清液与经化粪池预处理的生活污水、循环冷却系统外排废水一并通过市政污水管网进入金口区污水处理厂进一步处理。外排废水应满足《污水综合排放标准》

(GB8978-1996)表 4 中三级标准限值要求(其中重金属类污染物应满足《生活垃圾填埋场污染控制标准》<GB16889-2008>表 2 限值要求,氨氮、总氮、总磷等污染物应满足《污水排入城镇下水道水质标准》<GB/T31962-2015>表 1 中 A 级限值要求)。规范设置厂区废水总排口,按要求安装在线监控装置并与管理部门联网。

(三)严格落实各项废气污染防治措施。加强焚烧炉运行管理,严格控制焚烧炉温度、停留时间等工况条件,有效减少二噁英等污染物生成。垃圾库、卸料大厅、渗滤液处理站、生活垃圾预处理车间、厨余垃圾预处理车间等区域产生的恶臭气体通过抽风系统送至焚烧炉焚烧处理;焚烧废气采用 SNCR 脱硝+半干法脱酸+干法脱酸+活性炭吸附+布袋除尘+SCR 脱硝设施处理,达到《生活垃圾焚烧污染控制标准》(GB18485-2014)表4限值要求(其中氮氧化物执行100毫克/立方米限值要求)后通过80米排气筒高空排放。排气筒设置为多筒集束式,并按规范要求设置采样孔和采样平台,焚烧废气排气筒应安装在线监控装置并与管理部门联网。

落实厨余垃圾处理、垃圾贮存、渗滤液处理及物料输送过程 中的无组织排放废气防治措施。垃圾库应设置活性炭吸附除臭应 急设施,生活垃圾预处理车间、厨余垃圾预处理车间、卸料大厅、 垃圾库、渗滤液处理站产臭单元应保持密闭和微负压状态,垃圾运输栈桥应采取全密闭设计,确保厂界和厂区内无组织排放污染物分别满足《恶臭污染物排放标准》(GB14554-1993)、《大气污染物综合排放标准》(GB16297-1996)。

- (四)落实地下水和土壤污染防治措施,按照规范要求对厂区地面进行分区防渗处理,加强各类设施及管线目常巡查,避免对地下水、土壤环境产生不利影响;按《报告书》要求定期组织开展地下水、土壤环境质量的跟踪监测工作。
- (五)优先选用低噪声设备,对噪声源合理布局并采取隔音、消声等有效降噪措施,落实《报告书》提出的声屏障建设要求,确保厂界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)相关标准要求。
- (六)项目应按"资源化、减量化、无害化"处置原则,落实《报告书》提出的各类固体废物的分类收集、处置措施。按照环保、安全有关规范要求建设飞灰固化物暂存场所及危险废物暂存场所。项目运行产生的飞灰先经固化稳定化处置,满足《生活垃圾填埋场污染控制标准》(GB16889-2008)有关要求后外运至飞灰填埋场或生活垃圾填埋场专区填埋;落实危险废物转移联单制度,废矿物油、废布袋、废蓄电池、脱硝系统废催化剂、化验室废试剂等危险废物分类收集暂存后定期交有资质的单位进行

妥善处置;其它固体废物应采取入炉焚烧或综合利用等方式妥善处置。

四、加强环境风险防控,严格落实《报告书》提出的各项风险防范措施和事故水池、储罐围堰、消防、自动报警、应急监控等设施设备。规范危险化学品和危险废物暂存及运输管理,严防泄漏、火灾、爆炸事故发生。结合本项目建设内容完善你公司环境风险应急预案,并实现与相关部门突发环境事件应急预案的有效衔接。加强安全事故防范及应急管理,定期开展环境安全隐患排查,组织环境应急培训和演练,提升风险防控和事故应急处置能力,切实防范环境污染事件发生。

五、项目应按要求设置 300 米环境防护距离, 你公司应配合相关部门落实规划控制要求, 在环境防护距离内不得建设居民住宅、学校、医院等环境敏感建筑。

六、项目投入使用后,你公司新增的化学需氧量、氨氮排放总量应分别控制在17.5吨/年、1.75吨/年以内,其他主要污染物排放总量不得超过我局核定下达的总量控制指标。其中新增二氧化硫、化学需氧量、氨氮排污权应通过排污权交易获得。

七、加强运行管理,减少垃圾运输、卸料过程恶臭气体无组织排放。

八、按照信息公开要求, 加强监测和信息公开。

项目实施过程中应严格执行环保设施与主体工程同时设计、同时施工、同时投产使用的环境保护"三同时"制度,将环境保护设施建设纳入施工合同,保证环境保护设施建设进度和资金,全面落实《报告书》提出的各项污染防治措施。项目竣工后,你公司应依法开展建设项目竣工环保验收,编制验收报告并依法向社会公开,经验收合格后项目方可正式投入运行。

项目建设及运营期间的环境监督检查工作由武汉市生态环境保护综合执法支队、武汉市生态环境局江夏区分局负责。

若本批复自生效之日起5年后项目方开工建设,其环境影响评价文件应报经我局重新审核;如项目性质、规模、地点和污染防治措施发生重大变动,应重新报批环境影响评价文件。





附件 3:《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化 预处理及环保提标改造(炉排炉改造)项目环评变更有关意见的复函》

附件2

# 武汉市生态环境局

市生态环境局关于武汉城市生活垃圾焚烧发电厂 生活垃圾分类资源化预处理及环保提标改造 (炉排炉改造)项目环评变更有关意见 的复函

武汉市绿色环保能源有限公司:

你单位报送的《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目变动情况分析说明》(以下简称《说明》)已收悉。经研究,现提出意见如下:

- 一、我局于2021年9月批复了《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书》(以下简称《报告书》),该项目包含城市生活垃圾分类资源化预处理、城市生活垃圾焚烧发电环保提标改造、长山口厨余垃圾焚烧协同处理工程等3个部分。项目建成后,全厂生活垃圾焚烧处理能力保持2000吨/日不变,新增生活垃圾预处理能力2600吨/日、厨余垃圾预处理能力500吨/日。
- 二、为统筹后续建设需求,你公司拟对项目原总平面布置进行优化,将项目建设内容全部调整至扩建厂区,现有厂区已有布局维持不变。项目变动后,处理工艺、生活垃圾焚烧处理能力、生活垃圾预处理能力、厨余垃圾预处理能力、配套环保设施等均

不发生变化,与原环评一致。根据《说明》分析结论以及专家评估结论,本次变动不构成重大变动,你公司按照《关于印发环评管理中部分行业建设项目重大变动清单的通知》(环办〔2015〕52号)规定,纳入竣工环境保护验收管理。

三、项目变动后,你公司应严格落实《报告书》及环评批复、 《说明》有关要求,加强建设、运营期间环境管理,确保各项污染物稳定达标排放,严格控制项目对周边环境的不利影响。



附件 4: 《武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标 改造(炉排炉改造)项目掺烧一般工业固废(含污泥)非重大变动环境影响分 析报告》专家评审意见

附件3

# 武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理 及环保提标改造(炉排炉改造)项目掺烧一般工业固废 (含污泥)非重大变动环境影响分析报告 专家评审意见

武汉市绿色环保能源有限公司于 2025 年 10 月 20 日在武汉组织召开了《武汉城市 生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉户炉改造)项目掺 烧一般工业固废(含污泥)非重人变动环境影响分析报告》(以下简称《分析报告》)的 专家评审会,与会代表和专家实地踏勘了项目现场,在听取了建设单位对项目概况介绍 和编制单位对《分析报告》主要技术内容的汇报后,经过质询和认真讨论后,形成专家 组评估意见如下:

#### 一、工程建设基本情况

#### 1、建设地点、规模、主要建设内容

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(护扫炉改造)项目位于武汉市江夏区郑店衔雷竹村。项目建设内容包括(1)2600t/d 垃圾预处理生产线。(2)将现有的一期3 台 400t/d 循环流化床锅炉置换升级为2 台 600t/d 机械炉排炉,同时配套建设脱硫脱硝除尘设施。(3)建设 500t/d 厨余垃圾预处理系统。

#### 2、环保市批情况

项目于2021年9月17日获得武汉市生态环境局出具的《市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目环境影响报告书的批复》(武环审(2021)13号)。三期环评批复后,项目部分工程内容发生变动。2022年7月,建设单位委托中国电力工程顾问集团中南电力设计院有限公司开展本项日变动情况分析说明编制工作(后称"第一次变动")。武汉市生态环境局于2022年8月11日针对三期项目变动情况分析说明报告出具了"市生态环境局关于武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉柜炉改造)项目环泮变更有关意见的复函"。复函内容同意本次工程内容变动,项目变动不属于重大变更。项目变动后,处理工艺、生活垃圾焚烧处理能力、生活垃圾预处理能力、厨余垃圾预处理能力、配套环保设施等均不发生变化,与原环评一致。2025年8月投入试运

行,项目整体尚未完成竣工环保验收。

#### 二、工程变动情况

对比三期工程环评报告及第一次变动,本次变动情况如下:

- (1) 项目建设性质、建设地点无变动。
- (2) 项目建设内容(主体工程、公辅工程、储运工程、依托工程)无变动。
- (3) 建设规模(2×600t/d 替代一期3×400t/d) 无变动。
- (4) 生产工艺无变动。
- (5) 主要生产设施无变动。
- (6) 采取的污染治理设施、污染物处置方式及排放去向无变动。
- (7) 原辅料及燃料变动如下:

本次变动主要内容为处置对象(燃料)的变动,将焚烧生活垃圾变动为掺烧一定比 例的一般工业固体废物及市政污泥。

(8) 总量控制指标无变动。

#### 三、评估结论

《分析报告》从项目变动前后的性质、规模、地点、生产工艺和环境保护措施五个方面进行分析,内容较全面、论述较清楚、依照生态环境部《污染影响类建设项目重大变动清单(试行)》(环办环评函(2020)688号)规定的内容判定,报告结论总体可信。《分析报告》经修改完善后,可作为该单位后续环境管控工作的指导依据。

#### 四、修改意见

- 1、细化污泥和一般工业固废来源、种类、占比、组分分析及管控措施:
- 2、细化污染物源强分析及污染防治管控措施分析;
- 3、列表说明掺烧前后总量控制指标实际排放变动情况;
- 4、完善相关附图附件。

专家组:

2025年10月20日

### 附件 5: 本期项目总量批复

附件5

# 武汉市生态环境局

武环函〔2021〕88号

# 市生态环境局关于武汉城市生活垃圾焚烧发电厂 生活垃圾分类资源化预处理及环保提标改造 (炉排炉改造)项目污染物总量 指标的审核意见

武汉市绿色环保能源有限公司:

你公司《关于申请武汉城市生活垃圾焚烧发电厂生活垃圾分 类资源化预处理及环保提标改造(炉排炉改造)项目污染物排放 总量指标的请示函》(以下简称《请示函》)已收悉。经研究,现 就该项目新增重点污染物总量指标提出审核意见如下:

- 一、该项目废水排入市政污水管网后进入金口污水处理厂处理。根据《请示函》中的核算结果,预计该项目所需的化学需氧量, 氦氮总量指标分别为 17.5 吨/年、1.75 吨/年。
- 二、我局原则同意将《请示函》中的核算结果作为该项目水 污染物总量控制指标,该项目所需的化学需氧量、氨氮总量指标 替代来源为 2021 年黄家湖污水处理厂扩建项目形成的削减量。
- 三、根据省人民政府办公厅印发《湖北省主要污染物排污权 有偿使用和交易办法》(鄂政办发 [2016] 96 号) 有关规定,该

项目新增化学需氧量、氦氦排放量的排污权由应你公司通过排污权交易取得。



# 附件 6: 排污权交易证书

根据《湖北省主要污染物排污权有偿使用和交易办法》、 《湖北省主要污染物排污权交易办法实施细则》等相关规定, 经审核,本污染物排污权交易行为符合程序、予以签证。



鉴证书编号	<b>郊环交差字【2021】0598号</b>					
项目编号	2132091721					
转让方	武汉市生态环境局					
受让方	此方	市最色环角	能源有限	公司		
标的名称	COD	KII,-K	50,	NO.		
成交数量(阿)	17.5	1.75	-	-		
成交价格(元/吨)	12540	18300	-	+		
成交金額(元)	或拾伍万壹仟牌佰柒拾伍團整 (251475)					
合同签署日期	2021年9月29日					

#### 备注

歷武汉市生客环境局审核,武汉市绿色环保能混有限公司 国武汉城市生活垃圾效流度电厂生活垃圾分类货源化预处理及 环保提标改造(於冰炉改造),葡萄买 17.5 吨化学精复量、1.75 吨数板排污权,企业于 2021 年 9 月 17 日在賴北环境資源交易 中心通过电子更价力或跨線化学需載量、氦氮排污板。

# 附件7:排污许可证

附件6

# 排污许可证

证书编号: 91420115764604453R001V

单位名称:武汉市绿色环保能源有限公司注册地址:武汉市江夏区郑店街雷竹村

法定代表人:成超

生产经营场所地址:武汉市江夏区郑店街雷竹村 行业类别:生物质能发电-生活垃圾焚烧发电 统一社会信用代码: 91420115764604453R

有效期限: 自2025年05月23日至2030年05月22日止



发证机关: (盖章)武汉市生态环境局江夏

区分局

发证日期: 2025年05月23日

中华人民共和国生态环境部监制

武汉市生态环境局江夏区分局印制

附件8:项目焚烧炉设计说明书

合同附件3



# 武汉城市生活垃圾资源化及焚烧发电 环保提标改造项目 机械焚烧炉排炉及辅助设备

技术协议

合 同 编 号: 2013360BSB221226018

甲方(买方): 杭州正晖建设工程有限公司

乙方(卖方): 光大环保技术装备(常州)有限公司

2022年12月



武昌项目焚烧炉设计说明书

# 武昌项目 焚烧炉设计说明书

# 光大环境

### 武昌项目焚烧炉设计说明书

#### 目录

1. 产品概述	1
2. 产品技术规范	2
3. 焚烧炉结构	4
3.1. 给料装置	
3.2. 给料炉排	
3.3. 焚烧炉排	8
4. 焚烧炉膨胀装置1	1
5. 液压系统1	2
6. 油燃烧器系统	2
7. 燃烧控制系统	2



武昌项目焚烧炉设计说明书

#### 1. 产品概述

本产品为光大环境自主研发的多级焚烧炉排,该焚烧炉的燃烧系统主要由给料斗和濯槽、给料炉排、焚烧炉排、液压系统、油燃烧器系统、燃烧空气系统和出渣系统等若干辅助系统组成,最终实现把垃圾转化为能量的一个复杂的物理化学反应过程。

垃圾经垃圾吊投入料斗。通过水冷式给料溜槽进入给料炉排。给料炉排定量的向焚烧炉排供应垃圾。焚烧炉排是焚烧装置的核心,其功能是实现垃圾的完全燃烧。焚烧炉排由6个单元组成,在焚烧炉内形成干燥区、燃烧区和燃烟区。焚烧炉排由固定炉排和滑动炉排组成,部分单元具有翻动炉排,其独特的翻动炉排设计,使炉排不仅具有通常的往复运动功能,而且还具有翻动功能,加强了对垃圾的搅动、松动、通风作用,更适应中国垃圾的低热值、高水分的垃圾焚烧特点。

单元焚烧炉排组各自的液压调节机构,完成对垃圾的移动(或翻动)功能,炉排的速度和频率可单独控制,提高了焚烧炉对热值波动范围很大的生活垃圾的适应性。对单元的炉排组的单独控制,使垃圾在焚烧炉排上完成干燥、加热、分解、燃烧、燃烬的每个反应过程能得到较好的控制,使炉渣热灼减率控制在<3%。

为防止炉墙内表面由于燃烧温度高而产生结焦, 焚烧炉侧墙的一部分设计成水冷墙构造, 以有效降低炉墙表面温度抑制结焦, 延长使用寿令。

为了确保烟气 850℃ 2S 的要求,安装辅助燃烧器。白 12 台变频调速风机是供的一次风通过预热器经蒸汽间接加热,然后输送到炉排的六个单元组件下方。为确保燃烧空气和烟气的充分混合,二次风多层注入第一垂直烟道内(二燃室),以完全燃烧 CO 为目的,使燃烧状况处于最佳位置。燃烧后的灰烬将通过捞渣机,排炉渣运输系统。从炉排上掉落的少量炉排灰被收集并送回到捞渣机。

整个焚烧系统由特有的自动燃烧控制程序控制。



武昌项目焚烧炉设计说明书

#### 2. 产品技术规范

600t/d 生活垃圾焚烧炉主要技术指标如下:

序号	项目	参数
7.	焚烧炉排型式	多級、液压驱动、机械炉排炉
2	每台焚烧炉连续处理垃圾量 (MCR)	25 t/h
3	每台焚烧炉最大连续处理垃圾量 (110%MCR)	27.5 t/h
4	焚烧炉设计热容量	58.1 MW
5	进炉垃圾低位发热量设计值	8374 kJ/kg
6	进炉垃圾低位发热量变化范围	5860~10455 kJ/kg
7	进炉垃圾量相对于额定垃圾处理量的波 动范围	60~110%
8	焚烧炉年累计运行时间	8000 h
9	烟气在>850°C的条件下停留时间	>2S
10	焚烧残渣热灼减率	<3%

### 附件 9: 建设项目竣工时间和调试时间公示网页截图

附件7



【武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保措 扫码查看公示详情 排炉改造)项目竣工日期公示】公示情况说明

公示有效期 2025年9月1日至2025年11月30日

公示时长 90

公示内容如下



#### 生态环境公示网



标题: 武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环 保提标改造(炉排炉改造)项目竣工日期公示

环评大* 分类: 验收 地区: 湖北 发布时间: 2025-10-22

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目 位于湖北省武汉市江夏区郑店街雷竹村, 武汉市绿色环保能源有限公司厂区内, 项目建成后全厂 生活垃圾焚烧处理能力保持 2000 吨/d 不变, 将优先保证生活垃圾的处理, 在不影响生活垃圾处 理的前提下进行一般工业固体废弃物的掺烧处理。项目严格控制掺烧比例, 一般工业固体废弃物 掺烧比例不超过焚烧总量的 30%, 其中污泥掺烧比例不高于 10%。新增生活垃圾预处理能力 2600 吨/d、厨余垃圾预处理能力500吨/d不变。

本项目于 2025 年 7 月 31 日完成对主体工程及配套环保工程的全部建设。据《建设项目环境保 护管理条例(国务院令第682号)的决定以及环保部关于发布《建设项目竣工环境保护验收暂行 办法》(国环规环评〔2017〕4号)的公示要求,现将武汉城市生活垃圾焚烧发电厂生活垃圾分 类资源化预处理及环保提标改造(炉排炉改造)项目竣工日期 2025 年 7 月 31 日在网站予以公 示。

项目名称: 武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉 改造)项目

竣工日期: 2025年7月31日

建设单位: 武汉市绿色环保能源有限公司

建设地点:湖北省武汉市江夏区郑店街當竹村,武汉市绿色环保能源有限公司厂区内

联系人: 肖经理

联系电话: 15827514408





【武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保损 扫码查看公示详情 排炉改造)项目调试日期公示】公示情况说明

2025年8月1日至2025年12月1日 公示有效期 公示时长 122

公示内容如下



#### 生态环境公示网



标题: 武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环 保提标改造(炉排炉改造)项目调试日期公示

环评大* 分类: 验收 地区: 湖北 发布时间: 2025-10-22

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉改造)项目 位于湖北省武汉市江夏区郑店街雷竹村, 武汉市绿色环保能源有限公司厂区内, 项目建成后全厂 生活垃圾焚烧处理能力保持 2000 吨/d 不变, 将优先保证生活垃圾的处理, 在不影响生活垃圾处 理的前提下进行一般工业固体废弃物的掺烧处理。项目严格控制掺烧比例, 一般工业固体废弃物 掺烧比例不超过焚烧总量的 30%, 其中污泥掺烧比例不高于 10%。新增生活垃圾预处理能力 2600 吨/d、厨余垃圾预处理能力500吨/d不变。

本项目于 2025 年 7 月 31 日完成对主体工程及配套环保工程的全部建设。据《建设项目环境保 护管理条例 (国务院令第682号)的决定以及环保部关于发布《建设项目竣工环境保护验收暂行 办法》(国环规环评〔2017〕4号)的公示要求,现将武汉城市生活垃圾焚烧发电厂生活垃圾分 类资源化预处理及环保提标改造(炉排炉改造)项目调试日期在网站予以公示。

项目名称: 武汉城市生活垃圾焚烧发电厂生活垃圾分类资源化预处理及环保提标改造(炉排炉 改造)项目

调试日期: 2025年8月1日-2025年12月1日

建设单位: 武汉市绿色环保能源有限公司

建设地点:湖北省武汉市江夏区郑店街雷竹村,武汉市绿色环保能源有限公司厂区内

联系人: 肖经理

联系电话: 15827514408



## 附件 10: 验收监测工况调查表

WHHJ/JL-5-025		172	KIII MIN	儿工况调	旦水		35 1	页,共 页
企业名称	計设名は	环弹制度	有明公司	企业地址	E	黄汉和夏	新海街道	金竹站
企业联系人	海	The second second	in persy	联系电话	f	15827014408		
监测目的	常规/	验收/监督	1	监测时机	8	2015.08.26		
1. 企业基本信息								
主要产品	生活性机	·艾林发	to	是否达到	日常工况	製/否		
年设计产能		1		实际产制	Ė	12	00t/d 19	对外·14时
年生产天数		3.65		实际年生	实际年生产天数 365			
设计原/燃料消耗	13	00 t/d		实际原/燃料消耗		TSot/d(生活特级下发+报图店(多级及		
检测期间产能	5#XP753t, 6#XP749t			检测期间	工况	5#4/ 125%, 6#4/15%		
2. 废水污染源现场						===		
废水来源	生活垃圾	考虑治+征	77.礼排业	排放时段	ŧ	全天		
处理工艺流程				力送WF) t	RO (Etata)	用粉的深	放处记	
废木去向	生产回闻标故污水管网			执行标准		(1981688		7
设计日处理量	(200 m3/d			监测期间	日处理量	hoo m3/d		
3. 废气污染源现场	调查内容							
推污口编号	04010	QA009						
排污口名称	5#11/	6#KP						
排污口高度 (m)	Som	fom						
环保工艺名称	SNORHEN	十十十二十十	城十八十八十五	3世治性发吸	4+布装除生	+SCRIPTION		
环保设施是否开启	2	100						
开启时段	祭	就						
对应生产线工况	11/5%	115%						
4. 噪声源现场调查印	<b>与容</b>			,				
測点位置								
影响测点主要声源								
声潭工作时段								
监测时声源工况	1	1	1	1	1	1	1	1
调查人:	调查时	[ii] :	企	业方代表:	TIE_	企	业公章:	

WHHJ/JL-5-025		179	€#∓.im./%	儿工况调	旦化		第 1	页, 典 页
企业名称	<b>建设本品产</b>	从华能底	的限公司	企业地址	E	学以本に変色	的估价通	24/23
企业联系人	Y	1		联系电话		1582 514		
监测目的	常规/	全收/监督/	1	监测时段		2025.08.	1]	
1. 企业基本信息		-						
主要产品	2:60	如花松花	电	是否达到日常工况		是// 否		
年设计产能		1		实际产能		1200	Hd (5#16	# 4 / 1
年生产天数		365		实际年生	产天数	365		
设计原/燃料消耗	1	wot/d		实际原/	燃料消耗	75040 (4:86	加州	被(高汗波)域
检测期间产能	5#4758	t, 6#x27	38t	检测期间工况		54x\$126%, 64x\$125%		
2. 废水污染源现场调查内容								
废水来源	生活转投海	生活的投资流达+征从村静水				经利		
处理工艺流程				PEWFI HE	गिहास्तरीव	部分深度生	1	
废水去向	生产明1年政治水省1日			执行标准		(LGB16889-204))		
设计日处理量	12	1 200 m3/d		监测期间日处理量		600m3/d		
3. 废气污染源现场	调查内容							
排污口编号	04010	172009						
排污口名称	5#47	6# **						
排污口高度 (m)	80	80						
环保工艺名称			HURRO	5十19十七米四月	计布发除生	+SCRAZZX		
环保设施是否开启	13	8						
开启时段	銀	紀						
对应生产线工况	126%	123%						
4. 噪声源现场调查	内容							
测点位置								
影响测点主要声源								
声源工作时段								
监测时声源工况	1	1	1	1	1	1	/	1
湖查人:	调查时	[6] :	企	业方代表:	版	企业	业公章:	
		2	汉环景检测	川服务有限公	ন		苯五族,	第 0 次修改

## 附件 11: 突发环境事件应急预案备案表

附件9

## 企业事业单位突发环境事件应急预案备案表

单位名称	武汉绿色环保能源有限公司	机构代码	91420115764604453R
法定代表人	成超	联系电话	1
联系人	肖建	联系电话	
座机电话	1	电子邮箱	
地址	详细地址: <u>江夏区郑店街雷竹村</u> 中心经度: <u>114°13′31.70″</u> 中		21' 22.08"
预案名称	武汉绿色环保能源有限公司突发	环境事件应急	预案

本单位于 2025 年 3 月 4 日签署发布了突发环境事件应急预案,备案条件具备,备案文件齐全,现报送备案。

本单位承诺,本单位在办理备案中所提供的相关文件及其信息均经本单位确认真 实,无虚假,且未隐瞒事实。



预案签署人

戏超

报送时间

7025.03.06

突发环境事件 应急预案备案 文件目录	<ol> <li>突发环境事件应急预案备案表</li> <li>环境应急预案及编制说明:         环境应急预案(签署发布文件、环境应急预案文本);         编制说明(编制过程概述、重点内容说明、征求意见及采纳情况说明、评审情况说明);</li> <li>环境风险评估报告;</li> <li>环境应急资源调查报告;</li> </ol>
	该单位的突发环境事件应急预案备案文件已于2025年3月6日 收讫,文件齐全,予以备案。
备案意见	
	备案受理部门《公章工
备案编号	420115-2025-15-M
报送单位	武汉绿色环保能派有限公司
受理部门 负责人	23% 经办人 旅游飞·

注: 备案编号由企业所在地县级行政区划代码、年份、流水号、企业环境风险级别(一般L、较大M、重大H)及跨区域(T)表征字母组成。

## 附件 12: 危险废物委托处置合同、转移联单及处置单位资质证明 处置合同:

附件10

## 危险废物委托处置合同

合同编号: 2013360DSC250516013

委托方(简称甲方): 武汉市绿色环保能源有限公司 法定代表人: 成超 受托方(简称乙方): 湖北润恒环境科技有限公司 法定代表人: 沈斌 危险废物经营许可证代码: <u>S42-13-81-0006</u>

根据《中华人民共和国固体废物污染环境防治法》以及其他相关法律、法规, 甲方在生产过程中产生的危险废物,不得随意排放、弃置或者转移,现委托乙方 处置。乙方作为有资质处理危险废物的专业机构,受甲方委托,接收并处置本合 同约定的甲方产生的危险废物。为确保双方合法利益,维护正常合作,特签订如 下协议,由双方共同遵照执行。

#### 第一条 危险废物包装与储存

- 1、甲方将生产过程中产出的危险废物连同包装物交予乙方处理,甲方应将各类 危险废物定点分开存放,贴好标识,不可混入其他杂物,以保障乙方处理效 率及安全。
- 2、甲方要根据危险废物的特性与状态妥善选用包装物。包装后的危险废物不得 发生外泄、外露、渗漏、扬散等可能污染现象。否则乙方有权拒绝运送(若 乙方负责运输)、接收,因此给乙方造成的车辆、人员等费用损失由甲方承担。

#### 第二条 穆交要求

- 甲方需按照《危险废物转移联单管理办法》向相应系统或当地环境保护行政 主管部门提交转移申请或备案,申请审核通过或备案后方可进行转移。
- 2、若因环境保护行政主管部门对危险废物转移审核未通过导致危险废物不能转移的,甲方应承担乙方为准备履行合同而发生的合理费用。
- 3、由乙方运输的,甲方必须于移交运输前把产生废物的名称、数量如实地提供给乙方,并安排人员对需要转移的废弃物进行装车。
- 4、由甲方自行安排运输的,应当按照乙方要求做好包装及标识。乙方有权自行决定是否到场指导装车,若乙方配合甲方到场指导装车的,不构成乙方接收废弃物及对移交废弃物的认可等确认,以废弃物到达指定地点时状态判断是否符合乙方接收标准,以乙方签署联单作为接收确认。甲方自行安排运输的。





需确保在双方确认的时间内移交,运输相关的任何争议与乙方无关。

- 5、除双方另有约定外,甲方移交废弃物数量、类别、主要有害成分等超过本合同约定的,乙方有权拒收,甲方应当承担因此造成的所有费用及损失。若接收后方发现类别、主要有害成分、有害含量等与合同约定不符的,乙方有权退回或参照乙方收取的同类物质处理费向甲方增收费用。
- 6、合同有效期內,乙方有权因设备检修、保养等技术原因暂缓提貨/收货但须及时书面告知甲方,甲方须有至少3天危险废物安全存储能力。
- 7、如遇雨雪天气等不可抗因素,乙方可书面告知甲方暂缓履行合同,甲方应妥 善存储危险废物,待不可抗因素消除后,乙方应及时告知甲方,并继续履行 合同。

#### 第三条 危险废物称重

- 在甲方厂区内对拟装车的危险废物进行过磅称重,由甲方提供合法的计重工 具或支付相关费用,并向乙方出具有效的计重单据。如甲方无计重工具,由 双方协商一致确定其他方式计重。
- 2、危险废物进入乙方厂区、乙方会进行过磅称重。甲方有称重的、若与乙方过磅重量误差超过土1.3%的,由双方协商确定实际重量。若甲方未称重的,以乙方称重数值为准。
- 3、甲乙双方交接危险废物时,必须认真填写"危险废物转移联单"各项内容, 作为双方核对危险废物种类、数量以及收费的凭证。

#### 第四条 费用结算

- 1、甲方需支付乙方人民币∠元(大写上)作为□预付款□保证金,于本合同签订_当 <u>无</u>以转账方式支付给乙方。
  - 保证金的处理: 甲方按约履行合同的, 乙方于合同期满甲方结清款项后 30 天内无息返还保证金。
  - 预付款的处理: 预付款可在双方结算时抵扣实际发生的处置费, 多退少补, 合同期满未抵扣完的, 乙方于合同期满后 30 天内无息返还。
- 2、甲乙按双方确认的《危险废物处置结算标准》对实际处理的危险废物进行结算。结算方式为以下第2种:
  - (1) 按月结算: 乙方于每月 10 日前向甲方递交上月实际接收危废对账单, 甲方确认后 15 日内向乙方结算上月款项。
  - (2) 按次结算: 乙方于每次接收危险废物后向甲方递交对账单,甲方确认并 收到乙方开具的 6%增值税专用发票后 25 日内向乙方结算费用。
- 3、甲方应在收到乙方对账单后<u>5</u>日内给予答复或提出有效异议。逾期未答复亦未提有效异议的,视为确认乙方对账单内容。
- 4、乙方凭双方确认的结算清单向甲方开具正式增值税发票。甲方若需先开票后付款的,乙方可在双方确认对账单后5日内向甲方开具税率为6%的增值税





专用发票。

- 5、甲方应按合同约定付款,每逾期一日按应付款的1‰向乙方按日支付违约金,最高不得超过对应逾期价款总额的20%。
- 6、甲方向乙方下述账户支付合同款项,若乙方需变更账户的,应至少提前 <u>15</u> 日通知甲方。

甲方账户名称: 武汉市绿色环保能源有限公司

银行账号:

开户行: 中

乙方账户名称: 湖北润恒环境科技有限公司

银行账号:

开户行: 湖

7、合同期内若因客观原因(废物有害物质类别、浓度及政策、法律、法规等变化) 导致危废处置成本增加的,甲乙双方可另行协商调整处置单价。

#### 第五条 违约责任

- 1、乙方是具有政府主管部门颁发的危险废物经营许可证的合法经营处置单位,在履行本合同期间,必须严格执行并遵守《中华人民共和国环境保护法》、《中华人民共和国固体废物污染环境防治法》等有关规定,乙方因违反上述承诺及环保规定而产生的法律责任均由乙方承担。
- 2、甲方应当按照当地相关规定及要求办理危险废物转移的备案、审批手续,因甲方违反相关规定导致的一切损失、责任由甲方承担。
- 3、甲方不得利用乙方的资质做任何经营项目,如竞标、买卖等;甲方在交给乙方的危险废物中不得夹带本合同范围之外的有名称或无名称的废物,尤其不能夹带易燃、易爆、放射性、剧毒等危险废物,否则,因此造成乙方运输、处理处置危废等相关环节出现各类安全事故和人身财产损失的,甲方应向乙方赔偿由此造成的所有经济损失并承担相应的法律责任。乙方有权对甲方所生产并委托乙方处置的危险废物进行检测、鉴定。如经乙方检测、鉴定,发现危险废物不符合双方约定的标准,或夹带易燃、易爆、放射性、剧毒等物质,或造反国家和地方法律法规规定的,乙方有权拒绝处置,并将危险废物质,或违反国家和地方法律法规规定的,一方有权要求甲方按照合同暂定总金额(各类废弃物预估量×单价的总和,下同)的_10%_支付违约金。甲、乙双方须按《危险废物转移联单管理办法》及相关法律法规,提供联单。若因甲方提供虚假或不合规的联单造成乙方损失的(包括但不限于行政处罚),甲方应赔偿乙方的所有经济损失,造成乙方被行政处罚的,处罚金额由甲方承担。
- 4、在本合同有效期内,若乙方的危险废物经营许可证有效期限届满且未获展延核准,或被有关机关吊销,则本协议自乙方危险废物经营许可证到期之日或被吊销之日起自动终止,双方均无需承担任何责任。终止前双方已履行的部

#### 分,仍按本协议相关约定执行。

#### 第六条 危险废物处置明细单

序号	危险废物名称	废物类别	废物代码	预计重量 (吨)	处置价格 (元/吨)	各注
1	废矿物油	HW08	900-218-08	5		
2	废油桶	HW08	900-249-08	3		
3	废过滤袋、废 油漆桶	HW49	900-041-49	20. 5		
4	实验室废液	HW49	900-047-49	2		
5	废石棉保温棉	HW36	900-032-36	6		

#### 第七条 其他

- 1、本合同期限: 自 2025 年 5 月 21 日起至 2026 年 5 月 31 日止。
- 2、本合同经双方签字盖章之日起生效,一式壁份,甲乙双方各执贰份。未尽事宜及变更事项,由双方经友好协商后订立补充协议,补充协议与本合同具有同等法律效力。
- 3、本合同的附件是合同的组成部分,具有法律效力。
- 4、本合同项下纠纷,双方友好协商解决。不能协商解决的,可提交原告所在地 地有管辖权的人民法院以诉讼方式解决。
- 5、其他: _____

(本页为签章页, 无正文)

甲方 (盖章): 或汉帝绿色环保能源有限公司

法人或代表 (签案) 为465

通讯地址:湖北省武汉市江夏区上海园附近

联系电话: <u>肖建/15827514408</u>

乙方 (盖章): 湖北润恒环境科技有限公司

法人或代表 (签字):

通讯地址:广水市十里办事处了石塘大

联系电话: 史文君/13057297119

签订日期: 2025年5月21日

#### 转移联单:

			危险。	废物车	<b>移联单</b>	138	西面面		
联单组	扁号: 202542000	00513443							
第一部	部分危险废物移	出信息(由移出	出人填写)						
单位名	称: 武汉市绿色环	下保能源有限公司			应急联系电话: 1	5827514408			
单位地	址:武汉市江夏区	区郑店街雷竹村							
经办人	:: 肖建	联系电话: 15	827514408		交付时间: 2025年	F08月20日 17	7时05分50秒	2	
序号	废物名称	废物代码	危险特性	形态	有害成分名称	包装方式	包装数量	移出量 (吨	
1.	废矿物油	900-218-08	毒性, 易燃性	L液态	毒性、易燃性	國相	33	4.8600	
2	废油桶	900-249-08	毒性. 易燃性	S固态	废矿物油	四桶	133	2. 5400	
第二部	邓分 危险废物运	输信息(由承边	人填写)						
单位名	称: 湖北承梦运输	有限公司			营运证件号: 4209	923100472			
单位地 县1(	址:湖北省孝感市 0005S室(智慧云名	5云梦县城关镇黄 谷孵化器)	香大道白云建材	城B区5栋4	联系电话: 153422	219066		E	
驾驶员	: 龚明顺				联系电话: 153916	598079			
运输工	具: 汽车				牌号: 鄂K45022				
运输起	点。武汉市江夏区	郑店街雷竹村			实际起运时间: 20	25年08月20日	17时07分	02秒	
经由地	: 广水到武汉								
运输终	点: 广水市十里办	事处红石塘村			实际到达时间: 20	25年08月20日	19时59分(	08秒	
第三部	3分 危险废物接	受信息(由接受	人填写)						
单位名	称:湖北润恒环填	科技有限公司			危险废物经营许可证编号: S42-13-81-0006				
单位地	吐: 广水市十里办	事处红石塘村							
经办人:	闫海荣	联系电话: 15	335793898		接受时间: 2025年	08月21日 17	时20分00秒		
序号	废物名称	废物代码	是否存在重	大差异	接受人处理意见	拟利用处	置方式	接受量 (吨)	
1	废矿物油	900-218-08	无		接受	D10焚	烧	4. 8600	
2	废油桶	900-249-08	无		接受	D10焚	436	2, 5400	

113 57.151 5.8050/report_05/Report_ResultAction.do?token=8fa1cdd4-d046-4e0a-86ba-8cb0981fd1a8&userName=15827283922&reportId=5795... 1/1

处置单位资质证明:



	湖	北润恒环境科技有限公司危险废物经营 业具体类别及规模一览表:	古许可证核	
经营方式	废物类别	废物代码证	小代码、数量	处置量(t/a)
	HWO2	<b>国</b> 3	20	1500
	HWO3		1	150
	HWO4	不含 263-007-04	12	1200
	HW06		6	500
	HWO8	不含 071 -001-08、071-002-08、072-001-08	29	300
	HW09		3	200
	HW11		85	800
焚烧处置	HW12	仅限于264-010-12、264-011-12、264-012-12 、264-013-12、900-250-12、900-251-12、 900-252-12、900-253-12、900-254-12、900- 256-12、900-255-12、900-299-12	12	1670
火死处点。	HW13		8	1100
	HW17		21	500
	HW37		4	50
	HW38	仅限 261-067-38	1	50
	HW39		2	80
	HW40		1	50
	HW45	仅限于 261-081-45、261-084-45.261-085-45	3	50
	HW49	仅限900-039-49、900-041-49(不含感染性废物)、 900-046-49、900-047-49、900-999-49、772-006-49	6	2600
	小计	16个类别214个代码,小计10	800吨/年。	
利用	HW08	HW08 (900-249-08, 仅限于沾染矿物油的废弃包装物)	1	3000吨/年
T4/11	HW49	HW49 (900-041-49, 仅限铁质包装物, 不含感染性废物)	1	(200万只 /年)

#### 附件13: 炉渣委托处置合同

附件11 武汉市绿色环保能源有限公司炉渣临时处置合同 已归档

#### 合同编号: 2013360DSC250926008

甲方: 武汉市绿色环保能源有限公司 通讯地址: 武汉市江夏区郑店街雷竹村 法定代表人: 成超 接收人雷蕾 日期2015.10.20

手机: 手机:

手机:

鉴于:

- 1. 乙方已充分踏勘并了解甲方现有生产状况,向甲方承诺并保证拥有生活垃圾焚烧炉渣的运输和综合利用处理的技术和能力,能够确保甲方现有生产线产生的炉渣合法及时得到处理。
- 2. 炉液同时具有综合利用价值, 乙方愿意向甲方支付价款以取得炉渣并进行综合利用(处理)。

为妥善处理垃圾焚烧炉渣,更好地实现甲方垃圾焚烧炉渣的无害化处理及资源化综合利用,甲、乙双方就甲方垃圾焚烧炉渣综合利用(处理)事宜,经友好协商,达成本协议。

#### 第一条 委托处理的炉渣范围

1.1甲方委托乙方处理的炉渣范围为焚烧炉所实际产生的炉渣。甲方对炉渣数量和质量不做任何保证,仅以接收炉渣时现状为准。甲方不对本项目垃圾质量做任何保障,工业垃圾、陈腐垃圾等固体废物掺烧比例根据生产运行情况由甲方自行决定,乙方不得对甲方垃圾质量、炉渣质量和数量、含水率等问题提出异议,仅以接收炉渣时现状为准。炉渣中的未燃尽可燃物(生料)、泥土与工业产品废弃物等经投标方分选后可返厂,未燃尽可燃物(生料)、工业产品废弃物等以甲方

地磅过磅数量为准,不予抵扣炉渣量(设备检修、调试等生产波动期间可酌情考虑)。炉渣含水率在炉渣结算量中不予扣减。

#### 第二条 合同期限

2.1本合同期限至2026年9月30日。合同期内甲方自建的炉渣生产线满足处置条件投入使用,自投入使用之日起,本合同自动终止,双方互不承担责任。

#### 第三条 乙方能力保证

- 3.1 乙方承诺并保证,在本合同签订后【10】日内须合法具备炉渣综合利用(处理)的能力,确保甲方委托乙方综合利用(处理)炉渣不会因乙方不具有炉渣处理的主体资格和技术能力而被处罚或承担其他法律责任。
- 3.2 乙方负责本协议所涉的乙方炉渣综合利用项目相关审批手续的办理并在前述 3.1 条约定的期限届满前向甲方提交加盖乙方公章的下述文件,包括但不限于:
- (1) 营业执照

(9) _

- (2) 炉渣综合利用(处理)项目的环境影响评价文件及批复
- (3) 炉渣综合利用(处理)项目的项目核准/备案文件
- (4) 炉渣综合利用(处理)项目的建设工程规划许可证、施工许可证
- (5) 炉渣综合利用(处理)项目的环保验收文件和整体工程竣工验收文件
- (6) 炉渣综合利用(处理)项目的排污许可(登记)文件
- (7) 炉渣综合利用(处理)项目的合法用地手续及土地使用权证书
- (8) 生产许可证、制砖许可证

以上文件中的批复对象、业主单位、证书主体、权利主体名称与乙方应一致。
3.3 乙方已充分理解并确认上述3.2条约定的文件属于乙方能够提交并应当提交
的文件范围,如果乙方未能在前述期限届满前向甲方完整提交全部上述资料的,
视为乙方不符合基本的技术能力要求,甲方有权解除合同并按照 10.1 条约定追
究乙方违约责任。

3.4 乙方保证在本合同履行期限内始终保持炉渣综合利用(处理)的相应技术能力和条件,并按月定期将炉渣运输、利用、处置情况书面报告甲方。

- 3.5 甲方有权至乙方项目现场实地了解乙方的炉渣处理能力, 乙方有义务配合甲方的了解核实。
- 3.6 乙方应确保采用符合甲方要求的货车(建议采用前四后八货车)拖运炉渣,密封上料,并符合国家和地方关于安全以及环境保护的要求,如因乙方未采用符合甲方要求的货车拖运炉渣造成甲方环保事故或炉渣无法正常转运的,从而对甲方造成的一切损失由乙方承担,乙方应提前将车辆和司乘人员信息向甲方备案,并发放射频卡。
- 3.7 如果乙方委托第三方运输的,则应确保第三方具有相应的道路货物运输许可证并保证运输车辆满足上述需要,并应要求承运单位按要求提前向甲方进行车辆和人员报备。因不符合要求以及甲方监管需要导致车辆无法入场,由此引发的后果和责任由乙方承担。
- 3.8 乙方确保本协议所涉的乙方炉渣综合利用项目在方案工艺设计、工程实施方 面满足以下生产、环保要求。
- 3.8.1 炉渣堆场、筛选水洗车间、制砖车间需要密闭设计,在堆放、装卸料时必须采取必要的全部采用密闭、防雨、防尘设施,如配套喷雾装置等,渣场至少能堆放10天渣量,厂区围墙高度不低于2m。
- 3.8.2 为维持现场环境,对原渣、筛选渣、废金属等材料须分区堆放,标识、标 牌清晰可辨,成品堆放整齐,尽量减少堆场量。
- 3.8.3 厂区的周围要有合理的绿化带,以确保与周边环境隔离,并提供树种种类及绿化带宽度。
- 3.8.4 炉渣运输车辆要求密闭,不能有滴漏、抛撒,炉渣重量以甲方地磅计量为准。车辆手续齐全,操作人员须持证上岗。
- 3.8.5 各项排放指标达到环评、国家及地方相关规定要求,制定各项目的检测计划(含质量、环保),委托有资质的检测单位进行检测,检测的频次不得低于环评批复要求。

- 3.8.7 对尾渣去向有明确实施方案并向甲方提交与具备资质的接收单位签署的接收承诺函或协议,提供废泥、渣最终的合理处置方式。
- 3.9 乙方应使用对环境保护有利的设备、技术和工艺,垃圾焚烧炉渣处理所产生的废气、废水、嗓音、粉尘、固体废弃物等需符合国家相关环保标准,乙方违反环境保护相关规定及要求所产生的一切后果(包括但不限于民事责任、行政责任和刑事责任)均由乙方自行承担,与甲方无涉。
- 3.10 乙方应遵守有关安全生产的管理制度,因乙方违反安全生产相关规定及要求导致的任何责任(包括但不限于民事责任、行政责任和刑事责任)均由乙方自行承担,与甲方无涉。
- 3.11 乙方对垃圾焚烧炉渣进行综合利用的可行性负全责,对垃圾焚烧炉渣的处理及综合利用产品的安全、质量、性能负全贵,甲方对垃圾焚烧炉渣的处理及综合利用产品的安全、质量、性能不承担任何责任。
- 3.12 乙方对负责炉渣的装车、运输、处置等,如发生安全事故全部由乙方承担, 甲方不承担任何责任。

#### 第四条 协议价款及支付

- 4.1 乙方应支付甲方炉渣价款,炉渣价款不含税价为 元/吨,如法定税率发生变化,不含税价不变,并重新计算税额,相应调整含税价。
- 4.2 炉渣款结算及支付
- 4.2.1 炉渣量按甲方生产月报显示的进厂生活垃圾量(不含一般工业垃圾等其他非生活垃圾)进行结算,结算比例范围为20-25%,超过进厂生活垃圾量25%的按照25%结算,低于20%的按照20%结算,在20-25%之间的炉渣量据实结算;但无论炉渣结算量多少,乙方承诺并保障全量处置甲方产生的全部炉渣。(例如说明:甲方2025年9月进厂生活垃圾量400000吨,炉渣结算量范围为400000*20%至400000*25%吨之间。2025年9月甲方炉渣过磅量若为75000吨,则乙方炉渣实际结算量按照80000吨结算;若甲方炉渣过磅量为81000吨,则据实结算,即乙方炉渣实际结算量为81000吨结算;若甲方炉渣过磅量为81000吨,则乙方炉渣实际结算量为81000吨结算;若甲方炉渣过磅量为110000吨,则乙方炉渣实际结算量按照100000吨结算。)
- 4.2.2 乙方炉渣运输车辆未经甲方地磅计量并书面确认不得出厂。乙方认可乙方



或其委托的第三方运输企业的司乘人员在计量单据上的签字效力。

4.2.3 炉渣处置费用按月结算,实行先付后用原则,乙方于每月5日前向甲方预

对应金额的增值税专用发票后5个工作口内对炉渣供应费用进行多退少补。

4.2.4 每月5日前,甲方将上月度炉渣数量对账表提供乙方,乙方如有异议,应 当在收到对账表后3个工作日内明确反馈具体意见(应至少说明具体异议及理 由),逾期未反馈以及反馈意见中未提及部分均应视为对原记载内容的认可和 同意,今后不得再提异议。

4.2.5 乙方对对账单有异议的,但不得拒绝或拖延支付无异议部分。

#### 第五条 履约保证金

- 5.1 本合同签订后 5 个工作日内, 乙方需将人民币 300 万元的履约保证金以银行 转账形式支付至甲方账户, 本协议期满后 15 个工作日内返还。履约保证金返还 时不计利息。
- 5.2 乙方同意甲方从履约保证金中扣收乙方应支付的违约金、赔偿金等款项。
- 5.3 乙方未按上述期限支付履约保证金的,甲方有权解除本合同,并要求乙方一次性支付 50 万元的违约金。

#### 第六条 现场管理要求

- 6.1 乙方应至甲方厂区现场收运炉渣,做到日产日清,并负责做好炉渣装卸工作,确保现场清洁。
- 6.2 乙方应要求其或其委托的第三方进入甲方厂区的人员严格遵守甲方的现场 管理和安全环保等制度。
- 6.3 对在甲方区域内工作的乙方人员无论在任何地方任何情况下发生的安全事故、财产损失及第三人事故,除因甲方原因造成外,均由乙方承担全部责任。如 乙方原因造成甲方人员或财产损失,由乙方承担全部责任,甲方有权解除协议并 不退还履约保证金,不足弥补损失部分另有权向乙方追偿。
- 6.4 进入厂区的运渣车辆须按规定速度(限速 5km/h)行驶并密封良好,不应有 抛洒现象,如出现抛洒,应立即组织人员进行清理。现场必须服从甲方运行值长

022

#### 或锅炉专业的调度。

- 6.5 乙方在炉渣装卸、运输、综合利用(处理)过程中应做好相关环境保护措施, 严禁出现擅自倾倒、堆放、丢弃、遗撒炉渣,以及未采取相应防范措施,造成炉 渣扬散、流失或者其他环境污染的情形。
- 6.6严禁乙方以任何方式将炉渣转卖或交由第三方进行综合利用(处理)。
- 6.7 如乙方在运输甲方所产炉渣的过程中需要获取相关部门的批准及同意,乙方 应按相关规定取得该等批准或同意,并将相关情况及时同步告知甲方。
- 6.8 乙方的项目建设、炉渣运输及综合利用(处理)过程中应严格遵守法律法规的规定,否则因此造成甲方经济损失的,甲方有权向乙方追偿。特别约定:甲方的经济损失包括但不限于罚款、第三方案赔、可再生能源电价补贴损失、税收优惠损失、财政补贴、政府奖励等,下同。
- 6.9 甲方有权对乙方处置本协议项下炉渣的场所、设备、设施及炉渣处置情况进行监督检查,并有权提出改进意见,乙方应当配合。
- 6.10 乙方在与甲方签订本协议时已对本协议所涉及事项的相关法律法规风险已 有充分认识和预计,乙方承担与此有关的所有责任,乙方保证甲方不因乙方的炉 渣处理行为而承担相关法律责任及经济责任。

#### 第七条 保密要求

- 7.1 未经甲方书面同意,乙方不得将甲方所属技术资料如图纸、标准、签订的合同等披露给任何第三方。
- 7.2 乙方对其在协议期间知悉的甲方商业、技术上的秘密及生产经营信息有保密 的义务。

#### 第八条 不可抗力

8.1 合作范围内,不可抗力是指不能克服的自然事件和社会事件。此类事件包括: 暴风雨、水灾、火灾、瘟疫、战争、骚乱、叛乱以及超设计标准的地震、台风等。 8.2 若不可抗力事件的发生完全或部分妨碍一方履行协议项目下的任何义务,则 该方可暂停履行受不可抗力影响的义务,但应继续履行本协议下的其他义务。一 旦不可抗力事件结束,受不可抗力影响方应尽快恢复履行全部义务。 8.3 受不可抗力事件影响的一方应采取合理的措施,以减少因不可抗力事件给另一方或双方带来的损失。如果受不可抗力事件影响的一方未能尽其努力采取合理措施减少不可抗力事件的影响,则该方应承担由此而扩大的损失。

#### 第九条 违约责任

- 9.1 乙方逾期支付炉渣价款的,每逾期一日,按应付炉渣价款金额的千分之三标准向甲方支付逾期付款违约金,违约金累计计算;逾期超过十日,甲方有权单方解除本协议,并且没收全部履约保证金。
- 9.2 乙方未能按第3.1条约定的期限内向甲方提交第3.2条列明完整资料的,延 迟按1000元/日扣减履约保证金。
- 9.3 无论以何种方式,如乙方将炉渣转卖第三方或转交给第三方综合利用(处理)的,应向甲方支付违约金50万元。
- 9.4 乙方未按约定时间向甲方提交炉渣运输和综合利用(处置)书面报告的,每次支付违约金5万元。

#### 第十条 合同终止和解除

- 10.1 除本合同其他条款约定的解除情形外,乙方如发生以下情形之一的,甲方亦有权解除本协议,且乙方应赔偿由此给甲方造成的全部损失,同时甲方有权 没收履约保证金或要求乙方支付等同于前三个月炉渣供应总价金额的违约金:
- (1) 因环保违法被政府部门行政处罚或追究刑事责任的;
- (2) 违法造成任何程度的环境污染事故的或出现人身伤亡等安全事故的;
- (3) 不具备炉渣处理的技术能力或主体资质的;
- (4) 被相关行政机关认定存在环保、安全、用地、建设等违法违规事项的:
- (5) 收运中断超过 3 日的或累计中断收运超过 3 次的,(按照甲方生产安排当前产生的渣全部当天运出,乙方原因未全部运出视为 1 次中断收运);
- (6) 逾期支付炉渣价款超过10个自然日或累积3次逾期支付炉渣价款的:
- (7) 炉渣运输或综合利用(处理)能力的有关证明文件存在不属实:
- (8) 无论以何种形式,将全部或部分炉渣转卖给第三方或委托或交由第三方进行综合利用(处理)的;
- (9) 有违反本合同其他义务, 经甲方催告5日内未纠正的。

10.2 甲方有权提前1个月通知乙方而单方解除本合同且不承担赔偿或违约责任。

#### 第十一条 争议

11.1 本协议在履行过程中发生争议,双方应首先友好协商,若双方协商后不能 达成一致意见,则应提交甲方所在地有管辖权的法院诉讼解决。 11.2 进行诉讼期间,除提交诉讼的事项外,协议仍应继续履行。

#### 第十二条 协议生效

- 12.1 本协议经双方盖章之日起生效。
- 12.2 本协议一式四份,由甲乙方各执两份,每份具有同等的法律效力。





1

附件 14: 《关于武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告 表的批复》(武环江夏审〔2025〕23 号)

附件12

# 武汉市生态环境局江夏区分局文件

武环江夏审[2025]23号

## 关于武汉市绿色环保能源有限公司炉渣综合 利用项目环境影响报告表的批复

武汉市绿色环保能源有限公司:

你公司委托武汉蓝天绿野咨询设计有限公司编制的《武汉市绿色环保能源有限公司炉渣综合利用项目环境影响报告表(报批版)》(以下简称《报告表》)及相关资料已收悉。经研究,现批复如下:

一、你公司拟投资 4487 万元,在武汉市江夏区郑店街道雷竹村武汉市绿色环保能源有限公司厂区内实施炉渣综合利用项目(项目代码: 2503-420115-04-01-391610)。项目利用现有厂房布置一座 3200 平方米的炉渣综合利用车间,建设一条 1500 吨/天炉渣分拣破碎综合利用生产线。在全面落实《报告表》提出的各项污染防治措施和风险防范措施的基础上,项目所产生的环境影响可以得到控制,从环境保护角度,同意你公司按照《报告表》中所列的建设内容、规模、地点和污染防治措施进行项目建

1

设。

- 二、同意《报告表》采用的评价标准,该《报告表》可作为项目环保设计和环境管理的依据。
  - 三、在实施建设项目时, 你公司应重点做好以下环保工作:
- (一)加强项目施工期间的环境教育与管理,文明施工,规范操作,合理安排作业时间,降低施工过程污水、扬尘、噪声等对周边环境的影响。
- (二)按照雨污分流原则建设厂区排水管网。生产废水收集 至本项目循环水处理系统,经沉淀后上清液用于本项目生产,不 外排;生活污水通过化粪池处理后排入厂区一、二期污水站处理, 达到《城市污水再生利用 工业用水水质》(GB/T 19923-2024) 敞开式循环冷却水系统补充水标准,最终回用于厂区循环冷却系统,不外排。
- (三)落实各项废气污染防治措施。严格控制各类废气无组织排放,加强路面清扫及洒水频次,炉渣处理车间、原料堆放区、成品堆放区等场所应采取密闭措施;炉渣卸料粉尘经喷淋、自然沉降处理后在厂房内无组织排放,上料粉尘经滤筒式除尘器收集处理后在厂房内无组织排放,炉渣臭气通过厂房内微负压收集后引入焚烧炉焚烧,且厂房内喷洒植物液除臭剂抑制臭气产生。厂界颗粒物排放浓度应满足《大气污染物综合排放标准》(GB16297-1996)表2无组织排放监控浓度限值要求,氨气、硫化氢、臭气浓度应满足《恶臭污染物排放标准》(GB 14554-93)中新建二级标准要求;同时强化物料运输过程中的污染控制,防止粉尘、物料及污水泄漏,减少对周边居民的影响。
  - (四) 落实地下水和土壤污染防治措施,按照规范要求对厂

区地面进行分区防渗处理,加强各类设施及管线日常巡查,避免对地下水、土壤环境产生不利影响。

- (五)选用低噪声设备,并通过优化设施布局,减震、隔声 吸声等有效措施,确保厂界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)相关标准要求。
- (六)项目应按"资源化、减量化、无害化"处置原则,落实《报告表》提出的各类固体废物收集、暂存和处置措施。按照环保、安全有关规范要求建设危险废物和一般工业固体废物暂存场所。落实危险废物转移联单制度,危险废物分类收集暂存后严格按照有关规定交有资质的单位进行妥善处置;一般工业固体废物规范暂存,泥渣交由相关单位综合利用,除尘灰收集后回用于生产工序;生活垃圾进入场内焚烧炉焚烧。
- 四、加强环境风险防控,严格落实《报告表》提出的各项风险防范措施。制定环境风险应急预案,并实现与相关部门突发环境事件应急预案的有效衔接。加强安全事故防范及应急管理,定期开展环境安全隐患排查,组织环境应急演练,提升风险防控和事故应急处置能力,切实防范环境污染事件发生。
- 五、项目实施后全厂污染物排放量不增加,污染物年排放总量控制在前期已核定的总量指标以内。

六、项目实施过程中应严格执行环保设施与主体工程同时设计、同时施工、同时投产使用的环境保护"三同时"制度,将环境保护设施建设纳入施工合同,保证环境保护设施建设进度和资金,全面落实《报告表》提出的各项污染防治措施。项目建成后,你单位应按照《建设项目竣工环境保护验收暂行办法》《建设项目竣工环境保护验收技术指南 污染影响类》(生态环境部公告

2018年第9号)规定的程序和标准,组织对配套建设的环境保护设施进行验收,编制验收报告,公开相关信息,接受社会监督,同时向辖区生态环境部门报送相关信息并接受监督检查,按程序开展验收并提出验收意见,项目经验收合格后方可正式投入运行。验收报告公示期满后5个工作日内,你单位应当登录全国建设项目竣工环境保护验收信息平台,填报建设项目基本信息、环境保护设施验收情况等相关信息。

在建设项目产生实际污染物排放之前,你单位应当按照国家排污许可管理规定申请办理排污许可手续,不得无证排污或不按证排污。

项目建设及运营期间的环境监督检查工作由武汉市生态环境保护综合执法支队九大队(江夏)负责。

若本批复自生效之日起5年后项目方开工建设,其环境影响评价文件应报经我局重新审核;如项目性质、规模、地点、生产工艺或者环境保护措施发生重大变动,应重新报批环境影响评价文件。



抄送: 武汉市生态环境保护综合执法支队九大队(江夏),武汉市江夏区 生态环境事务服务站,武汉蓝天绿野咨询设计有限公司。

#### 附件 15: 飞灰螯合固化物特许经营合同

附件13

## 武汉城市生活垃圾焚烧发电项目 (江夏长山口垃圾焚烧发电厂) 特许经营合同的补充协议

甲方: 武汉市城市管理委员会

乙方: 武汉市绿色环保能源有限公司

甲乙双方分别于 2009 年 8 月 8 日签订《武汉城市生活垃圾焚烧发电项目(江夏长山口垃圾焚烧发电厂)特许经营合同》、2013 年 12 月 13 日《特许经营合同补充协议》(以下简称原合同)。基于全市垃圾处理的实际情况和环保要求的变化,由于垃圾焚烧飞灰处置等原因,导致垃圾处理成本发生较大变化,为保障乙方正常生产运营,甲乙双方经友好协商,达成如下补充协议:

- 一、合同期内, 乙方负责始终严格遵守中华人民共和国有关法律、法规、法令和标准规范, 合法合规达标处置生活垃圾焚烧飞灰。乙方应对生活垃圾焚烧产生的飞灰进行螯合固化处理, 飞灰螯合固化物经检测合格后运输至甲方指定的专用场地内。
- 二、依据原合同,双方同意对甲方向乙方支付的垃圾 处理费单价进行调整。本次调整后,甲方向乙方支付的垃圾 处理费暂定单价如下:
  - (一)飞灰螯合固化物运往陈家冲垃圾填埋场的垃圾

(二)飞灰螯合固化物运往青山北湖飞灰厂的垃圾处

三、根据武汉市垃圾产生量、垃圾含水率及项目设施 设备运行等情况,甲方向本项目供应的生活垃圾量或乙方的 垃圾处理量的变化不超过原合同约定的年垃圾供应总量的 30%时,不视为违约,其垃圾处理费按调整后的暂定单价结 算。

四、本补充协议是原合同不可分割的一部分,具有同等的法律效力。

五、若本补充协议与原合同就有关问题的约定不同, 以本补充协议为准。其他未尽事宜,甲乙双方按照原合同执 行。

六、本补充协议经双方法定代表人或其授权代表签字 并加盖公章生效,执行时间为 2018 年 1 月 1 日起至《武汉城 市生活垃圾焚烧发电项目(江夏长山口垃圾焚烧发电厂)特 许经营合同》完成之日止。

七、本补充协议文本为中文,一式十份,甲乙双方各执五份。

武汉市城市管理委员会: [公章]

法定代表人或其授权代表 (签字):

日期: 2019年 1月 29日

武汉市绿色环保能源有限公司: [公章]

法定代表人或其授权代表 (签字):

日期: 7019年 /月 7月日

### 附件 16: 飞灰螯合固化物运输合同、台账及转移联单

运输合同:

飞灰固化螯合物指定运输协议书

原件档案室已归档

接收人编号: 2019693411903250

附件14

甲 方: 武汉市绿色环保能源有限公司

乙 方: 武汉凯路运输有限公司

根据武汉市城市管理委员会"武城管文【2014】1号"文件精神和2014年1 月4日协调会议要求,以及符合武汉市紧急避险的条件和相关的文件,乙方受委 托负责武汉市五座垃圾焚烧厂产生的飞灰固化螯合物的统一运输管理任务。现就 甲方在经营过程中产生的飞灰固化螯合物的运输事宜,协议双方达成如下协议, 以遵照执行。

第一条 根据武汉市城市管理委员会"武城管文【2014】1号"文件精神, 甲方在经营过程中产生的飞灰固化螯合物将全部由乙方负责运输至武汉市城市 管理委员会指定的填埋地点存放。

第二条 甲方应严格按照飞灰固化螯合生产技术标准和相关的工艺要求生产飞灰固化螯合物,交付乙方运输的飞灰固化螯合物必须经养护并固态成型,并具有一定的硬度。同时,飞灰固化螯合物必须符合环境部门的检测要求(GB16889-2008)。甲方不得自行或委托任何第三方运输/处置飞灰固化螯合物。

第三条 若飞灰固化螯合物不符合固态成型标准或环境检测要求的,则乙方 有权拒绝运输。

第四条 甲方交付运输的飞灰固化螯合物不符合固态成型标准或环境检测 要求,所造成的污染事故责任及损失应由甲方承担。

第五条 甲方负责飞灰固化螯合物的包装并承担费用,应采用<u>包装袋(吨</u> 袋)形式包装,以封闭、无泄漏为标准。若包装封口破损,或存在泄漏等现象, 乙方有权拒绝运输。

第六条 因甲方包装不符合本协议约定或存在质量问题,导致飞灰固化螯合物在运输途中泄漏,或因包装破裂造成无法卸载的,则甲方应承担由此产生的法律责任及损失。

第七条 甲、乙双方的责任以甲方厂门为界,甲方承担厂门以内的全部安全、环保责任,乙方承担运输过程中的安全、环保责任。

第八条 甲方负责飞灰固化螯合物在出厂之前的装载工作并承担费用。

第1页共3页



第九条 甲方装载飞灰固化螯合物时,须每月 10 日之前向乙方提供合格的 飞灰固化螯合物的检测报告。

第十条 乙方运输车辆抵达甲方厂区后<u>2</u>个小时内,甲方应完成装载工作 并发车。若因甲方原因无法装载飞灰固化螯合物或发车的,则由甲方承担该车次 的运行费用。

第十一条 甲方装载飞灰固化螯合物后应负责过磅,核查飞灰固化螯合物的吨位/车次(±2%),办理【武汉市城管委垃圾焚烧飞灰固化螯合物转移备案表】 五联单单据手续。

第十二条 运输车辆进场装载时间为每个自然日8:00 至22:00, 在其余时间 内乙方有权暂缓运输, 但在特殊(紧急)情况下或政府主管部门要求运输的除外。

第十三条 出现下列情形之一的, 乙方有权暂缓承运:

- 1、大风、降雨、降雪等特殊天气条件下;
- 2、飞灰固化螯合物的固态成型标准不符合本协议约定的:
- 3、甲方未提供飞灰固化螯合物环境检测合格报告的;
- 4、飞灰固化螯合物的包装不符合本协议约定的;
- 5、甲方超过本协议约定时限装载的:
- 6、甲方未能过磅核查飞灰固化螯合物吨数的。

第十四条 运输费用:

- 1、运输单价:根据《市财政局关于陈家冲和长山口生活垃圾处理等暂定价格审核的意见》以及甲方"武城管文[2019]"《市城管委关于调整陈家冲、长山口生活垃圾处理费单价等情况的报告》确定的单价自 2018 年 1 月 1 日起执行。
  - (一) 飞灰螯合物固化物运往陈家冲垃圾填埋场的折算吨垃圾运输单价为:
  - (二)飞灰螯合物固化物运往青山北湖飞灰厂的折算吨垃圾运输单价为:长

在财政部门核定新的输运单价前,甲、乙双方按照本条约定的单价结算运费; 财政部门核定新的运输单价后,甲乙双方将根据新的价格结算运费。

- 2、运费结算(含税): 当期垃圾处理量 * 运输单价 (甲方销项税额 乙 方提供增值税专票可抵扣进项税额) - 甲方承担增值税附加税额。
  - 3、结算方式:
- (1) 乙方于每30个运输工作日后向甲方提供【结算表】单据,需经甲方、 乙方、及主管部门核对确认。

第2页共3页





(2) 甲乙双方按【结算表】单据据实结算。甲乙双方的结算与武汉市城市 管理委员会和甲方结算飞灰运输补贴费同步进行。

甲方依据本协议每半年据实结算运费后, 乙方应向甲方开具增值税发票。

第十五条 甲方应在场区内设置相应的指示牌,且在其厂区内向乙方提供必要的运输条件。运输车辆因违反甲方安全管理规定或操作失误导致的安全事故甲方不负任何责任(但甲方自身存在过错的除外)。对于损坏甲方场区内任何财物的,甲方有权利要求责任方按价赔偿。

第十六条 运输车辆进入甲方库区后,甲方应提供合理的现场指挥服务,同时应提供符合要求的进场道路。因甲方违反安全管理规定或指挥失误导致发生安全事故,则甲方应承担全部责任,若因此损坏运输车辆或给运输人员造成人身伤害的,甲方还须予以赔偿。

第十七条 乙方要提升运输能力,保证武汉市日产生量匹配运输。同时满足甲方固化飞灰及时外运需求,如因乙方运输能力不足造成甲方固化飞灰积压过多影响正常生产运营,乙方承担甲方经济损失;同时甲方有权暂停固化飞灰结算。

第十八条 违约责任

任何一方违反本协议约定,则应承担相应的违约责任。

第十九条 本合同履行期限

本合同经双方法定代表人或其授权代表签字并加盖公章生效,执行时间为 2018年1月1日起至甲方与武汉市城市管理委员会签订的《武汉城市生活垃圾 焚烧发电项目(江夏长山口垃圾焚烧发电厂)特许经营合同的补充协议》(2019 年1月29日版)履行完毕之日止。

第二十条 本协议一式肆俗, 甲、乙双方各执两份, 由双方签章后生效。

甲 方: 武汉市绿色环保能源有限公司

代表: 3473

日期: 2017年3月25日

乙 方: 武汉凯路运输有限公司

代表:

日期:

分子年3公月25日

第3页共3页





#### 飞灰管理台账:

				危险废	物贮存环	节记	录表		
								_	
記	录表编号: 20	25		废物和	772-0	02-18	Jo.	15年09月	
			入库情况					出库情况	
入库时间	废物来源	废物数量 (吨)	容器材质及容量	族物存放位置	废物贮存 部门经办 人(签字)	出库时间	废物数 量 (吨)	废物去向	废物贮存部门经办 人(签字)
1	生活垃圾焚烧	57,44	<b>神袋</b>	飞灰整合物暂存间	31	1	0	湖北汉源环鑫固废处置公司	1
2	生活垃圾焚烧	12440	吨袋	飞灰螯合物暂存间	25	2		期北汉源环鑫固废处置公司	Justa
3	生活垃圾焚烧	114.82	10年55	飞灰整合物暂存间	13	3	0	湖北汉源环鑫固度处置公司	
4	生活垃圾焚烧	57-46	n4:555	飞灰整合物暂存间	73	4	0	湖北汉源环鑫荫废处置公司	
5	生活垃圾焚烧	91.48	电影	飞灰螯合物暂存间	33	5	2460	湖北汉源环鑫因废处置公司	3116
.6	生活垃圾焚烧	81.24	吨袋	飞灰整合物智存间	27	6	149-24	湖北汉源环鑫固废处置公司	Sino
7	生活垃圾焚烧	87.24	吨段	飞灰整合物暂存间	カナ	7	15036	湖北汉源环鑫固族处置公司	Jule
8	生活垃圾焚烧	35.44	经统	飞灰餐合物暂存间	3-3	8	0	湖北汉源环鑫固坡处置公司	
9	生活垃圾焚烧	76.28	吨袋	飞灰螯合物暂存间	33	9	0	湖北汉源环鑫固废处置公司	
10	生話垃圾焚烧	87.64	地袋	飞灰整合物智存间	314	10	0	湖北汉源环鑫彻废处置公司	
11	生活垃圾焚烧	66.46	吨袋	飞灰整合物智存间	24	11	233.34	湖北汉源环鑫區废处置公司	- Suma
12	生活垃圾焚烧	4212	吨袋	飞灰整合物暂存间	39	12	0	湖北汉源环鑫固度处置公司	
13	生話垃圾焚烧	33.34	吨级	飞灰整合物暂存间	力多	13	0	湖北汉源环鑫固度处置公司	
14	生活垃圾焚烧	2324	吨装	飞灰整合物智存间	24	14	0	湖北汉源环鑫固度处置公司	
15	生話垃圾焚烧	48.64	吨袋	飞灰整合物暂存间	37	15	199.60	湖北汉源环鑫固废处置公司	Juste
16	生活垃圾焚烧	44.82	吨級	飞灰整合物暂存间	7.9	16	0	湖北汉源环鑫固度处置公司	

#### 飞灰转移联单:

	号: 202542000	出信息(由移出	Later					IN LANGE	
		保能源有限公司	八棋与儿						
_	tr 武汉市红夏区				应急联系电话: 15	5827514408			
经办人:	The same of the sa				I				
字号		联系电话: 15	100000000000000000000000000000000000000		交付时间: 2025年				
1	废物名称	度物代码	危险特性	形态	有害成分名称	包裝方式		移出量 (吨)	
	<b>焚烧飞灰</b>	772-002-18	毒性	S間态	重金属、二恶英	編织版	20	26. 2600	
		输信息《由承运	人填写)				*		
	x: 武汉凯路运输			营运证件号: 4201	0210210029	5			
		丹水池街解放大河	世2649号10栋		联系电话: 136598	886418			
驾驶员:					联系电话: 15391567179				
医輸工具					牌号: 鄂AEQ919				
	: 武汉市江夏区	郑店街當竹村			实际起运时间: 2025年10月16日 12时09分57秒				
陸由地:		-							
		青山区植姆庙2栋			实际到达时间: 20	25年10月16日	12时49分	14秒	
		受信息(由接受							
		固度处置有限公司		1	危险废物经营许可	证编号: HM42	201013610		
	陈政武	青山区楠姆庙2栋			in of the				
		联系电话: 15			接受时间: 2025年10月16日 15时19分14秒				
						拟利用处	置方式	接受量 (吨)	
1	焚烧飞灰	772-002-18	无		接受	D1填	埋	26, 2600	
字号 1	废物名称	废物代码 772-002-18	是否存在』 无		接受人处理意见	拟利用处	置方式		

#### 附件 17: 惰性废弃物处置协议

## 原件档案室已归档

## 惰性固废处置协议收人 高亮 日期 2070 3.72

附件15

甲方: 武汉诺洁环境工程有限公司(以下简称"甲方")

乙方: 武汉市绿色环保能源有限公司(以下简称"乙方")

依据《中华人民共和国合同法》的规定,双方本着"平等自愿、互惠互利"的原则,就乙方武汉市长山口城市生活垃圾焚烧发电厂分拣出的不可燃惰性固体废弃物(以下简称"惰性固废")的处置事宜,经双方协商一致,达成以下协议,并承诺共同遵守。

#### 一、基本情况

- 1、处置物: 生活垃圾分拣出的不可燃惰性固体废弃物:
- 2、乙方运送至甲方的惰性固废预计总量: 1200吨/年;
- 3、甲方接收乙方惰性固废的时间:每日12:00至15:00:
- 4、处置方式: 与生活垃圾混合后卫生填埋。

#### 二、处置依据

- 1、乙方须获得行业主管部门同意将乙方生活垃圾筛选惰性固废运送至甲方所属武汉市江夏长山口生活垃圾卫生填埋场填埋的书面材料,并提供给甲方。
- 2、因政府相关管理部门通知甲方不得接收乙方的生活垃圾筛选惰性 固废时,甲方将随时停止接收,且不承担任何责任。若乙方期望继续在甲 方垃圾场处置,须自行协调或向相关管理部门提出申请。

#### 三、惰性固废供应量与结算方式

- 1、在本协议有效期内,乙方应依照本协议的规定,在正常运营期内 按照约定的惰性固废总量送至甲方所属武汉市江夏长山口生活垃圾卫生 填埋场。运营期间超出约定惰性固废总量范围须控制在1600吨/年以内, 如再超出部分由甲乙双方另行协商处理,甲方有权拒绝继续接收乙方惰性 固废。
- 2、在本协议有效期内,惰性固废供应保底量为800吨/年,如实际惰性固废供应量未达到保底量则按保底量进行结算,如实际惰性固废供应量超出保底量则据实结算。



- 3、乙方应保证在运营期间惰性固废供应量的稳定性,并于每月20日前提供下月月度惰性固废供应量,同时保证供应给甲方的惰性固废量为少于20吨/日。
- 4、结算价格按甲方所接收的乙方惰性固废的数量(单位:吨)进行结算, 合同签订后,甲方在每季度结束后的10个工作日内按照约定标准进行结算并向乙方提供税务机关认可的有效发票或者收据(发票或者收据名目为:其它服务类-服务费)。乙方收到甲方提供的发票或者收据后,10个工作日内将费用汇入甲方银行账户。

#### 四、处置数量核算

- 1、乙方所有交由甲方处置的惰性固废,必须通过甲方地磅进行计量, 结算数量以甲方计量数据为准。
- 2、双方根据以上原则每月 20 日前核定上月惰性固废处置量,并由双方代表签字确认。

#### 五、甲方的权利和义务

- 1、甲方承担妥善处置乙方惰性固废的义务,避免在处置过程中及之 后发生环境污染事故。
  - 2、甲方有权要求乙方惰性固废在甲方磅房进行计量。
- 3、乙方未按双方协议(包含但不限于本协议)按时向甲方支付惰性 固废处置费,甲方有权拒绝接收乙方惰性固废。
  - 4、乙方如有违反本协议相关内容,甲方有权拒绝接收乙方惰性固废。
- 5、在特殊情况下,甲方无法接收乙方惰性固废的,甲方应提前一天 以书面形式通知乙方,并不承担任何责任。
- 6、乙方惰性固废运输车辆在甲方填埋场倾倒期间出现车辆事故,甲 方不承担任何责任。
- 7、如乙方运送至甲方的惰性固废超出约定的惰性固废处置总量,甲 方有权拒绝接收乙方惰性固废。

#### 六、乙方的权利和义务

1、乙方须保证提供给甲方的惰性固废必须满足垃圾填埋场填埋准入 标准:《生活垃圾填埋场污染控制标准》GB16889-2008。





- 2、乙方惰性固废进入甲方填埋场前,乙方须提供惰性固废组分检测报告,包含湿基、干基组分,及日填埋量估算,便于甲方填埋场制定填埋方案。
  - 3、乙方有权要求甲方在规定的时间段内接收乙方惰性固废。
- 4、乙方运送至甲方处置的惰性固废必须满足生活垃圾卫生填埋要求, 且在甲方地磅进行计量称重。
- 5、乙方及其委托的运输单位在甲方场内需严格遵循甲方各项规章制 度。
- 6、乙方有对所有交由甲方处置的惰性固废进行自行计量并定期向甲 方提供惰性固废组分检测报告及计量数据的义务。
  - 7、乙方应按照本协议要求进行费用结算工作。
  - 8、服从甲方现场管理与调度,合理安排运输车辆。
- 9、乙方委托的惰性固废运输车辆在厂区内按限速要求行驶,确保车辆行驶安全。损坏场内设施、设备的,应按价赔偿。造成人身伤害的,乙方须予以赔偿。造成"滴漏抛酒"等污染环境的行为的,由乙方负责妥善解决。因乙方原因导致甲方遭受行政处罚或民事索赔的,甲方有权要求乙方赔偿全部损失。
  - 10、乙方委托的惰性固废运输车辆毛重不得超过70吨。

#### 七、协议终止

- 1、乙方有下列事情之一的,甲方可不经催告单方解除协议:
- (1) 乙方未取得行业主管部门同意将乙方生活垃圾筛选惰性固废运送至甲方处置的书面材料。
- (2) 政府等相关管理部门通知甲方不得接收乙方的生活垃圾筛选惰性固废。
  - (3) 乙方提供给甲方的数据及资料系伪造或与实际情况不符的。
  - (4) 乙方逾期付款超过30日。
- (5) 乙方有违反本合同或相关法律法规规定之情事,经甲方限期令 其改善而未于该期限内改善完毕。
  - (6) 乙方运送至甲方的惰性固废不符合垃圾填埋场填埋准入要求的。





- 2、惰性固废处置价格调应根据当地城镇经济社会发展水平、居民可支配收入及消费物价指数增长情况,每三年进行一次调整,经甲乙双方协商达成一致后签订补充协议,双方未能就处置价格达成一致的,协议自动终止。
- 3、本协议未尽事项或者有需要调整的内容,可由双方约定后签订补充协议,补充协议与本协议具有同等效力。

甲 方: 武汉诺洁环境工程有限公司 乙 方: 武汉市绿色环保能源有限公司

地址: 武汉市江岸区兴亚路 108号 地址

法定代表人(签字或盖章)

电话:

传 真:

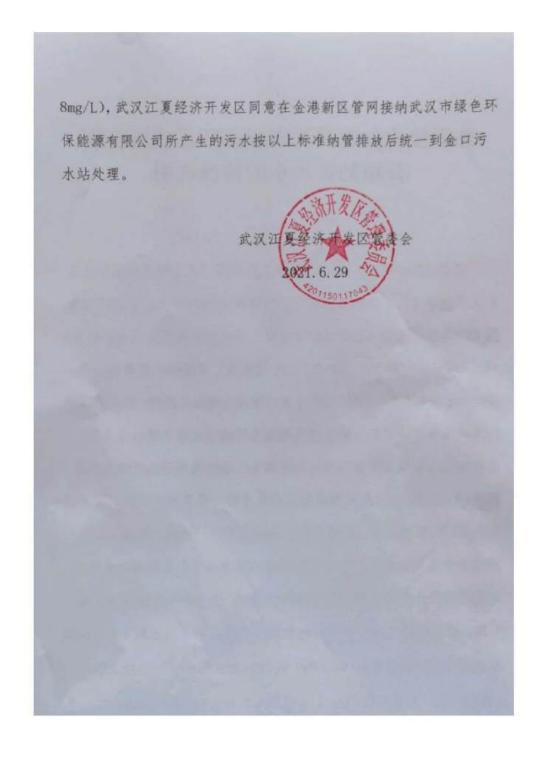
电

话:

传 真:

签订时间: 2020年 月 日

签订时间: 2020年3月4日




### 附件 18: 项目废水纳管情况说明

附件16

# 关于接收处理武汉市绿色环保能源有限 公司纳管污水的情况说明

根据 2016 年 1 月 29 日武汉市人民政府《关于研究加强生活垃 级处理设施建设工作的会议备忘录》要求及2016年10月12日江夏 区人民政府召开的《长山口垃圾处理厂尾水排放问题协调会议纪要》 和《关于长山口填埋厂、焚烧厂、生态处理厂共建排水管道统一接入 会口污水处理厂污水管道设计方案的复函》的会议精神, 武汉市绿色 环保能源有限公司作为城市建设配套处理城市生活垃圾的重点项目, 运行的一二期项目尾水回用后多余部分已经依据环评批复纳入金港 新区污水管网排放。规划建设的三期垃圾预处理资源化及改扩建项目 纳入武汉市重点工程,项目经市、区政府等部门协调,同意该公司生 产运行中所产生的污水经过厂内污水站预处理后产生的尾水纳管进 入金港新区金龙大道段市政管网纳管排放,统一进入金口污水处理厂 处理。该公司进入污水管网的污水第一类污染物必须达到《生活垃圾 填埋场污染控制标准》(GB16889-2008)表2标准(其中总汞≤ 0.001mg/L, 总镉≤0.01mg/L, 总铬≤0.1mg/L, 六价铬≤0.05mg/L, 总砷≤0.1mg/L, 总铅≤0.1mg/L); 第二类污染物必须达到《污水综 合排放标准》GB8978-1996 三级标准要求(其中COD≤500mg/L, SS ≤400mg/L , BODs≤300mg/L, 氨氮≤45mg/L, 总氮≤70mg/L, 总磷≤



### 附件 19: 重点排污单位污染源自动监控设施备案表

### 附件17 第一章 重点排污单位污染源自动监控设施备案表 武汉市绿色环保能源有限公司 91420115764604453R 机构代码 单位名称 尚建 15827514408 备案联系人 联系电话 口废水类 区废气类 污染源自动监控 设备明细: MCS100FT型烟气排放连续监测系统 设备说明 山珍 11型环保数采纹 1、武汉市重点监控企业污染源自动监控设施技术审查表(基础 信息) 2、武汉市重点监控企业污染源自动监控设施技术审查表(废本 3、比对监测报告和质控样考核报告(复印件) 4、治污设施在企业内部的平面分布图 备案文件目录 5、污染罐自动监控设施安装现场图 6、已安装的污染源自动监控设施基本信息及相应的环境监测仪 器质量监督检验中心适用性检测证书 7、污染源自动监控设施调试及试运行报告 8、与第三方运营签订的委托运行合同(复印件)或自行运维的 情况说明: 9、其他: 本单位于 2025年 0月 人口完成污染源自动监控设施备案文件的编制,备案 条件具备, 备案文件齐全。 无虚假,且 本单位承诺。 以上文件中的所有材料信息均约 未隐瞒事实。 报送单位 (盖章) 武汉市城色环保能源有限公司 在多 报送人签署 该单位的污染源自动监控设施 日收讫,资料齐全,予以备案。 备案意见 42015-2025-10-2 各案编号 受理单位负责人 受理经办人 注:上述备案表一式两份,报送单位和受理部门各留一份。

### 第一章 重点排污单位污染源自动监控设施备案表

	武汉市绿色环保能源有限公可	机构代码	91420115764604453R
备案联系人	传建	联系电话	15827514408
污染源自动监控 设备说明	□废水类   ☑废气类   设备明细: MCS100FT型烟   山珍Ⅱ型环保	1145-7000-2200-1	測系统
备案文件目录	1、武汉市重点监控企业等信息) 2、武汉市重点监控企业等/废气) 3、比对监测报告和质控料 4、治污设施在企业内部的 5、污染源自动监控设施等 6、已安装的污染源自动监控设施等 器质量监督检验中心适用 7、污染源自动监控设施; 8、与第三方运营签订的委	音樂源自动監打 音樂源自动監打 音學演發告(多 哲學面分類 音學表現施基本信 性檢測证书 習試及试运行	空设施技术审查表(废水 (印件) (总及相应的环境监测仪 ()
	情况说明: 9、其他:		
条件具备, 备案立 本单位承诺,	9、其他; 25年 <b>/</b> 0月 <b>/5</b> 日完成污染源 (件齐全。 以上文件中的所有材料信	息均经	为保护工程度, 且
条件具备。备案文	9、其他; 25年 <b>/</b> 0月 <b>/5</b> 日完成污染源 (件齐全。 以上文件中的所有材料信	息均经	<b>在伊护</b>
条件具备, 备案文本单位承诺, 本单位承诺, 未隐瞒事实。	9、其他: 25年 / 0月 / 5日完成污染源 (件齐全。 以上文件中的所有材料信 报送单位	(皇均经) 在政市 报 时间 动监控设施备	及
条件具备,备案为本单位承诺,本障瞒事实。 报送人签署	9、其他: 25年 / 月 / 5日完成污染源 25年 / 月 / 5日完成污染源 以上文件中的所有材料信 报选单位 该单位的污染源自2	(基章) (基章) (基章) (基章) (基章) (基章) (基章) (基章)	2015、40.15 全型样已于2015年10月

### 附件 20: 企业环保管理相关制度文件



# 武汉市绿色环保能源有限公司

Wuhan green environment energy CO., LTD.

### 环保排放管理规定

版次	2025 年第一版
文件编号	WCYG-201
状态	受控☑ 非受控□ 作废□
密 级	級審☑ 机窑口 绝密口
编制/日期	英 2015. 7. 11
审核/日期	Je 2015.07.11
批准/日期	XX 2015 7.11

2025年07月11日发布

2025年08月01日实施



Wuhan green environment energy CO., LTD.

# 环境监测管理制度

版次	2025 年第一版		
文件编号	WCYG-202		
状态	受控☑ 非受控□ 作废□		
密级	秘密図 机密口 绝密口		
编制/日期	ZW6 204.12.15		
审核/日期	前走 2024.12.25		
批准/日期	A Josep. n. v		

2024年12月26日发布



Wuhan green environment energy CO., LTD.

# 自行监测执行方案

版次	2025 年第一版		
文件编号	WCYG-203		
状态	受控☑ 非引	免拉□ 作废□	
密 级	秘密図 机	きロ 絶容口	
编制/日期	- susto	2 2024.12.30	
审核/日期	成連	2024. 12.30	
批准/日期	A -	. Joly. r.	

2025年01月01日发布



Wuhan green environment energy CO., LTD.

# 在线监测设备管理制度

版次	2025 年第一版		
文件编号	WCYG-204		
状态	受控☑ 非受控□ 作废□		
密级	秘密☑ 机密□ 绝密□		
编制/日期	30% pg 2024, 1230		
审核/日期	旗 204.12.30		
批准/日期	\$ 6. my . m. go		

2024年12月31日发布



Wuhan green environment energy CO., LTD.

# 危险废弃物污染环境防治责任制度

版次	2025 年第一版		
文件编号	WCYG-205		
状态	受控図 非受控□ 作废□		
密级	秘密☑ 机密口 绝密口		
编制/日期	Jeff 2024.12.31		
审核/日期	英速 2029.17.31		
批准/日期	30ki 2019.17.37		

2025年01月01日发布



Wuhan green environment energy CO., LTD.

# 环保设施管理制度

版 次	2025 年第一版		
文件编号	WCYG-206		
状 恋	受控図 非受控□ 作废□		
密級	秘密図 机密口 绝密口		
島制/日期	Total & Torce, 12,30		
审核/日期	施 2014.12.3。		
批准/日期	\$ 2004.12.30		

2024 年 12 月 31 日发布



Wuhan green environment energy CO., LTD.

# 危险废物管理制度

版次	2025 年第一版		
文件编号	WCYG-207		
状 态	受控☑ 非受控□ 作度□		
密 級	秘密☑ 机密口 绝密□		
编制/日期	ZMG 2014. 12.31		
审核/日期	成色 2024. 12.31		
批准/日期	2 is 2014, 12.31		

2025年01月01日发布

2025年01月01日实施

1/12



Wuhan green environment energy CO., LTD.

# 环境报告及信息公开管理制度

版次	2025 年第一版		
文件编号	WCYG-210		
状态	受控☑	非受控□	作废口
密级	秘密☑	机密口	绝容口
编制/日期	711	Ve rou	1,12,30
审核/日期	对	13 2014	12.4
批准/日期	٤	h	14.12.30

2024年12月31日发布



Wuhan green environment energy CO., LTD.

### 环保三同时管理制度

版次	2025 年第一版		
文件编号	WCYG-211		
状态	受控☑ 非受控□ 作废□		
密 级	秘密☑ 机密□ 绝密□		
编制/日期	Jule 2014, 12,30		
审核/日期	在走 2014.71.3		
批准/日期	2 6 2014.12.30		

2024年12月31日发布



Wuhan green environment energy CO., LTD.

### 排污许可管理制度

版次	5	2025 年第一版	
文件编号		WCYG-212	
状态	受控☑	非受控口	作废口
密级	秘密☑	机密口	绝密口
编制/日期	刀络慢	2014.12	, 30
审核/日期	查库	2014.	12.30
批准/日期	4	Jork	)

2024年12月31日发布



Wuhan green environment energy CO., LTD.

# 环保培训管理制度

版次	2025 年第一版
文件编号	WCYG-216
状态	受控☑ 非受控□ 作废□
密级	秘密図 机密口 绝密口
编制/日期	ZMO 2014,12,27
审核/日期	前走 2014.12.27
批准/日期	\$ le 2014.11.

2024年12月30日发布

2025年01月01日实施

1/4



Wuhan green environment energy CO., LTD.

# 突发环境事件应急管理制度

版次	2025 年第一版			
文件编号	WCYG-219			
状态	受控☑ 非受控□ 作废□			
密级	秘密図 机密口 绝密口			
编制/日期	Sunta 2024.12.31			
审核/日期	, 黄连 2014.12.31			
批准/日期	3 le 2019. n. 4			

2025年01月01日发布

### 附件 21-1: 在线比对检测报告





### 武汉华正环境检测技术有限公司

# 检测报告

武华委检字 2025(09067)号

武汉市绿色环保能源有限公司 2025 年临时委

检 测 类 别: 例行监测





### 声明

- 一、本报告无三级审核及授权签字人签名或涂改无效,未加盖本公司红 色检测报告专用章及其骑缝章无效:
- 二、本报告部分复制或完整复制后未加盖本公司红色检测报告专用章无效:
- 三、由委托方自行采集送检的样品,本报告仅对送检样品的检测数据负责,不对样品来源负责;
  - 四、未经同意本报告不得用于广告宣传;
- 五、委托方若对本报告有异议,请于收到报告之日起十个工作日内以书 面形式向我公司提出,逾期不予受理。无法保存、复现的样品不受理申诉。

武汉华正环境检测技术有限公司联系方式:

地址: 武汉市东湖高新技术开发区高新四路 40 号 葛洲坝太阳城 5 栋 6 楼

邮编: 430200

电话: 027-87968590

传真: 027-87968590-8888

本项目检测实验室地址:

☑武汉实验室: 武汉市东湖高新技术开发区高新四路 40 号葛洲坝太阳城 5 栋 6 楼

□宜昌实验室: 宜昌市西陵经济开发区西湖路 32 号三峡创谷 3 栋 4 楼

□襄阳实验室:襄阳市高新区检测认证产业园8号楼6楼



第 1 页 共 25 页

### 一、 任务来源

受武汉市绿色环保能源有限公司的委托,武汉华正环境检测技术有限公司于 2025 年 09 月 03 日对武汉市绿色环保能源有限公司废气污染源自动监测系统进行了在线比对监测,并于 2025 年 09 月 03 日-2025 年 09 月 06 日完成了检测分析。

### 二、 监测方案

监测类别	监测点位	监测项目	监测频次
废气在线比对监 测	5#炒 ¹	烟气湿度、烟气温度、烟气 流速、颗粒物	5次/天,监测1天
	5#19-1	一氧化碳、氧含量、氯化氢、 二氧化硫、氮氧化物	9次/天,监测 1 天
	20142	烟气湿度、烟气温度、烟气流速、颗粒物	5 次/天,监测 1 天
	6#炉1	一氧化碳、氧含量、氯化氢、 二氧化硫、氮氧化物	9次/天,监测1天

### 三、 样品性状

样品类别	样品性状	
有组织排放废气	颗粒物	滤膜采集样
有组织排放废气	氯化氢	冲击式吸收瓶采集样



报告编号: 武华委检字 2025(09067)号 第 2 页 共 25 页

### 四、检测项目、分析方法及其依据和分析仪器

1、参比监测分析方法及依据一览表

监测项目	方法依据	方法检出限	分析仪器及编号
一氧化碳	《固定污染源废气 一氧化碳的测定 定电位电解法》 (HJ 973-2018)	3mg/m³	紫外烟气分析仪 崂应 3023Y 型 YQ-A-XC-077-3
二氧化硫	《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》 HJ 1131-2020	2mg/m³	紫外烟气分析仪 崂应 3023Y 型 YQ-A-XC-077-3
氧含量	《空气和废气监测分析方法》(第四版 增补版) 国家环境保护总局(2003年) (5.2.6.3) 电化学法	İ	紫外烟气分析仪 崂应 3023Y 型 YQ-A-XC-077-3
氮氧化物	《固定污染源废气 氮氧化物的测定 便携式紫外吸收法》(HJ 1132-2020)	1mg/m³	紫外烟气分析仪 崂应 3023Y 型 YQ-A-XC-077-3
氯化氢	《固定污染源废气 氯化氢的测定 硝酸盐容量法》(HJ 548-2016)	2mg/m³	微量滴定管/ 5ml(HZWD0005-2-02)
烟气流速	《固定污染源排气中颗粒物测定与气态污染物采样方法 》GB/T 16157-1996 流速 皮托管法	i	大流量低浓度烟尘/气测试化
烟气温度	《固定污染源排气中颗粒物测定与气态污染物采样方法》 GB/T 16157-1996 温度 铂电阻法	Ĭ	大流量低浓度烟尘/气测试化
烟气湿度	《固定污染源废气 低浓度颗粒物的测定 重量法》 HJ 836-2017 湿度 仪器法	Ĺ	紫外烟气分析仪 崂应 3023Y 型 YQ-A-XC-077-3
颗粒物	《固定污染源废气 低浓度颗粒物的测定 重量法》 (HJ 836-2017)	1.0mg/m³	电子天平 Quintix65-1CN(SQP) YQ-A-SY-026-1



第 3 页 共 25 页

### 2、CEMS 法监测分析仪器一览表

监测点位	项目	分析方法	设备型号	生产厂商
	烟气流速	差压	PT1-G	北京银谷亿 达科技有限 公司
	颗粒物	激光后散射	DH SB30M	SICK
	氮氧化物	傅里叶红外	MCS100FT	SICK
Ī	二氧化硫	傅里叶红外	MCS100FT	SICK
5#炒	烟气湿度	傅里叶红外	MCS100FT	SICK
	氯化氢	傅里叶红外	MCS100FT	SICK
	烟气温度	热电阻	PT1-G	北京银谷亿 达科技有限 公司
	氧含量	氧化锆	MCS100FT	SICK
	一氧化碳	傅里叶红外	MCS100FT	SICK
	烟气流速	差压	PT1-G	北京银谷位 达科技有限 公司
	颗粒物	激光后散射	DH SB30M	SICK
	氮氧化物	傅里叶红外	MCS100FT	SICK
	二氧化硫	傅里叶红外	MCS100FT	SICK
6#灯*1	烟气温度	热电阻	PT1-G	北京银谷位 达科技有限 公司
	烟气湿度	傅里叶红外	MCS100FT	SICK
	氧含量	氧化皓	MCS100FT	SICK
	一氧化碳	傅里叶红外	MCS100FT	SICK
	氯化氢	傅里叶红外	MCS100FT	SICK



第 4 页 共 25 页

### 五、质量控制和质量保证

1、严格按照《固定污染源烟气(SO₂、NO_x、颗粒物)排放连续监测技术规范》(HJ 75-2017)、《固定污染源烟气(SO₂、NO_x、颗粒物)排放连续监测系统技术要求及检测方法》(HJ 76-2017)、《固定污染源监测质量保证和质量控制技术规范》(HJ/T 373-2007)、《固定污染源废气 一氧化碳和氯化氢自动监测技术规范》(HJ 1403-2024)和相应的技术规范进行采样和检测。

- 2、为确保检测数据的准确、可靠,在样品的采集、运输、保存、实验室分析和数据计算 的全过程均按照相关技术规范的要求进行。
  - 3、所有检测及分析仪器均在有效检定期,并参照有关计量检定规程定期校验和维护。
  - 4、监测人员经考核合格,持证上岗。



报告编号: 武华委检字 2025(09067)号 第 5 页 共 25 页

### 六、 技术指标要求

### 表 1 准确度技术要求

检测项目		试验指标限值
颗粒物	准确度	当参比方法测定烟气中颗粒物排放浓度平均值: 排放浓度≤10mg/m³时,绝对误差不超过±5mg/m³ 10 mg/m³<排放浓度≤20mg/m³时,绝对误差不超过±6mg/m³ 20 mg/m³<排放浓度≤50mg/m³时,相对误差不超过±30% 50 mg/m³<排放浓度≤100mg/m³时,相对误差不超过±25% 100 mg/m³<排放浓度≤200mg/m³时,相对误差不超过±20% 排放浓度>200mg/m³时,相对误差不超过±15%
二氧化硫	准确度	当参比方法测定烟气中二氧化硫排放浓度平均值: 排放浓度 < 57mg/m³时,绝对误差不超过±17mg/m³ 57mg/m³≤排放浓度 < 143 mg/m³时,相对误差不超过±30% 143mg/m³≤排放浓度 < 715 mg/m³时,绝对误差不超过±57mg/m³ 排放浓度≥715mg/m³时,相对准确度≤15%
氮氧化物	准确度	当参比方法测定烟气中氮氧化物排放浓度平均值: 排放浓度<41mg/m³时,绝对误差不超过±12mg/m³ 41mg/m³≤排放浓度<103mg/m³时,相对误差不超过±30% 103mg/m³≤排放浓度<513 mg/m³时,绝对误差不超过±41mg/m³ 排放浓度≥513mg/m³时,相对准确度≤15%
流速	准确度	流速>10m/s 时,相对误差不超过±10% 流速≤10m/s 时,相对误差不超过±12%
烟温	准确度	绝对误差不超过±3℃
湿度	准确度	烟气湿度 > 5.0%时,相对误差不超过±25% 烟气湿度≤5.0%时,绝对误差不超过±1.5%
氧气	准确度	>5.0%时,相对准确度≤15% ≤5.0%时,绝对误差不超过±1.0%
一氧化碳	正确度	参比方法测量一氧化碳干基浓度平均值: 排放浓度<25 mg/m³时,绝对误差平均值应在±8mg/m³以内 25 mg/m³≤排放浓度<63 mg/m³时,相对误差应在±30%以内 63 mg/m³≤排放浓度<313 mg/m³时,绝对误差平均值应在±25 mg/m³以内 313 mg/m³≤排放浓度<1250 mg/m³时,绝对误差平均值应在±125 mg/m³以内 1250mg/m³≤排放浓度<3750 mg/m³时,绝对误差平均值应在±375 mg/m³以内 3750mg/m³≤排放浓度<7500 mg/m³时,绝对误差平均值应在±625mg/m³以户 排放浓度≥7500mg/m³时,相对误差的95%置信上限≤15%
氯化氢	正确度	参比方法测量氯化氢干基浓度平均值: 排放浓度<17mg/m³时,绝对误差平均值应在±7mg/m³以内 17mg/m³≤排放浓度<82mg/m³时,相对误差应在±40%以内 82mg/m³≤排放浓度<408mg/m³时,相对误差应在±30%以内 排放浓度≥408mg/m³时,相对误差的 95%置信上限≤30%



第6页共25页

### 七、比对监测结果

### 1. 污染源烟气中颗粒物比对监测结果

监测点位	比对时	参比方法 (mg/m³)	CEMS 法 (mg/m³)	
		10:50-11:22	1.6	1.2
	2025年09月03日	11:34-12:06	1.6	1.1
5#炒		12:26-12;58	1.4	1.1
		13:09-13:41	1.8	1.1
		13:52-14:24	1.2	1.1
	平均值		1.5	1.1
比对监测结果	绝对误差 (mg/m³)		-0.4	
	相对误差(%)		9	1
	技术要求		≤±5n	ng/m³



第7页共25页

### 2. 污染源烟气中湿度比对监测结果

监测点位	比对时	参比方法 (%)	CEMS 法 (%)	
		10:35-10:40	22.60	24.02
		11:26-11:31	22.70	23.63
5#坎门	2025年09月03日	12:12-12:17	21.20	21.87
		13:00-13:05	22.90	23.48
		13:43-13:48	22.80	23.56
	平均值		22.44	23.31
比对监测结果	绝对误差(%)			/
	相对误差(%)		3	.9
	技术要求		<u>≤±2</u>	25%



第 8 页 共 25 页

### 3. 污染源烟气中烟温比对监测结果

监测点位	比对时	参比方法 (℃)	CEMS 法	
		10:50-11:22	184.40	184.6
		11:34-12:06	184.60	184.5
5#坎	2025年09月03日	12:26-12:58	184.30	183.1
		13:09-13:41	183.80	182.3
		13:52-14:24	182.90	185.5
	平均值		184.00	184.00
比对监测结果	绝对误差 (°C)		,	)
	相对误差(%)		Į.	/
	技术要求		≤±.	3°C



第 9 页 共 25 页

### 4. 污染源烟气中流速比对监测结果

监测点位	比对时	参比方法 (m/s)	CEMS 法 (m/s)	
		10:50-11:22	12.80	12.21
		11:34-12:06	12.10	13.24
5#好	2025年09月03日	12:26-12:58	13.30	14.62
		13:09-13:41	14.10	14.68
		13:52-14:24	13.10	12.58
	平均值		13.08	13.47
比对监测结果	绝对误差 (m/s)			<i>I</i>
	相对误差(%)		3	.0
	技术要求		≤±1	10%



第 10 页 共 25 页

### 5. 污染源烟气中二氧化硫比对监测结果

监测点位	比对时	间	参比方法 (mg/m³)	CEMS 注 (mg/m³)
		10:35-10:40	26	27.3
		11:26-11:31	24	28.5
		12:12-12:17	28	32.7
		13:00-13:05	36	35.5
5#好	2025年09月03日	13:43-13:48	41	43.7
		14:26-14:31	46	49.8
	-	14:35-14:40	32	33
		14:48-14:53	31	38.3
		14:55-15:00	25	29.3
	平均值		32.1	35.3
比对监测结果	绝对误差 (mg/m³)		3	.2
	相对误差(%)			7
	技术要求	9	≤±17	mg/m³



报告编号: 武华委检字 2025(09067)号 第 11 页 共 25 页

### 6. 污染源烟气中氮氧化物比对监测结果

监测点位	比对时	[11]	参比方法 (mg/m³)	CEMS 法 (mg/m³)
		10:35-10:40	86	93.4
		11:26-11:31	117	113.7
5#炉		12:12-12:17	99	106.4
		13:00-13:05	105	113.7
	2025年09月03日	13:43-13:48	102	112.4
		14:26-14:31	90	96.2
		14:35-14:40	84	94.7
		14:48-14:53	86	94.3
		14:55-15:00	81	91.1
	平均值		94.5	101.8
比对监测结果	绝对误差 (mg/m³)			ſ
	相对误差(%)		7	.7
	技术要求		≤±,	30%



第 12 页 共 25 页

### 7. 污染源烟气中氧气比对监测结果

监测点位	比对印	计间	参比方法 A (%)	CEMS 法 B (%)	数据对差 =B-A
	2025年09月03日	10:35-10:40	6.07	6.33	0.26
		11:26-11:31	5.94	6.03	0.09
		12:12-12:17	6.70	6.71	0.01
		13:00-13:05	6.16	6.38	0.22
5#炉		13:43-13:48	6.35	6.4	0.05
		14:26-14:31	6.07	5.62	-0.45
		14:35-14:40	6.46	6.67	0.21
		14:48-14:53	5.30	5.58	0.28
		14:55-15:00	6.48	6.71	0.23
	比对监测结果			氧气技术要求	
	参比方法平均值		6.17	相对准确度≤15%	
m 11 km²+	数据对差的平均值的绝对值		0.10		
5#炉	数据对差的标准偏差		0.23		
	置信系数绝对值		0.18		
	相对准确是	相对准确度(%)			



第 13 页 共 25 页

### 8. 污染源烟气中氯化氢比对监测结果

监测点位	比对时间		参比方法 (mg/m³)	CEMS 法 (mg/m³)
	2025年09月03日	10;51-11:06	8.3	7.7
		11:11-11:26	9.6	7.7
		11:35-11:50	11.3	6.0
		12:21-12:36	8.4	5.0
5#炒		12:57-13:12	11.9	5.2
		13:35-13:50	10.4	6.2
		13:55-14:10	11.0	6.0
		14:22-14:37	10.1	6.1
		14:45-15:00	13.6	5.8
	平均值(mg/m³)		10.5	6.2
比对监测结果	绝对误差 (mg/m³)		-4.3	
	相对误差(%)		8	7
	技术要求		≤± 7r	mg/m³



第 14 页 共 25 页

### 9. 污染源烟气中一氧化碳比对监测结果

监测点位	比对时间		参比方法 (mg/m³)	CEMS 注 (mg/m³)
	2025年09月03日	10:35-10:40	ND(0)	1.6
		11:26-11:31	ND(0)	1.4
		12:12-12:17	ND(0)	1.1
		13:00-13:05	ND(0)	1.3
5# <i>\</i> p ² 1		13:43-13:48	ND(0)	1.2
		14:26-14:31	ND(0)	1.2
		14:35-14:40	ND(0)	1.4
		14:48-14:53	ND(0.1)	1.4
		14:55-15:00	ND(0)	1
	平均值 (mg/m³)		0.01	1.3
比对监测结果	绝对误差 (mg/m³)		1.3	
	相对误差(%)		I	
	技术要求		≤±8n	ng/m³



报告编号: 武华委检字 2025(09067)号 第 15 页 共 25 页

### 10. 污染源烟气中颗粒物比对监测结果

监测点位	比对时间		参比方法 (mg/m³)	CEMS 法 (mg/m³)
6#炉	2025年09月03日	10:44-11:16	1.4	1.3
		12:02-12:34	1.7	1.2
		12:42-13:14	1.6	1.2
		13:22-13:54	1.6	1.2
		14:03-14:35	1.2	1.2
	平均值		1.5	1.2
比对监测结果	绝对误差(mg/m³)		-0.3	
	相对误差(%)		1	
	技术要求		≤±5n	ng/m³



第 16 页 共 25 页

### 11. 污染源烟气中湿度比对监测结果

监测点位	比对时间		参比方法 (%)	CEMS 法 (%)
	2025年09月03日	10:27-10:32	18.75	20.64
		11:55-12:00	20.41	21.03
6#均当		12:34-12:39	21.26	22.14
		13:15-13:20	19.67	19.88
		13:55-14:00	22.15	22.95
	平均值	均值 20.45		21.33
比对监测结果	绝对误差(%)		1	
	相对误差(%)		4.3	
	技术要求		<u>≤±2</u>	25%

Ħ



第 17 页 共 25 页

### 12. 污染源烟气中烟温比对监测结果

监测点位	比对时间		参比方法 (℃)	CEMS 法
6#灯	2025年09月03日	10:44-11:16	179.10	178.3
		12:02-12:34	178.00	181.8
		12:42-13:14	180.10	183.2
		13:22-13:54	181.40	183.4
		14:03-14:35	182.30	183.8
比对监测结果	平均值		180.18	182.10
	绝对误差 (℃)		1.9	
	相对误差(%)		1	
	技术要求		≤±.	3°C



第 18 页 共 25 页

### 13. 污染源烟气中流速比对监测结果

监测点位	比对时间		参比方法 (m/s)	CEMS 法 (m/s)
6#炊	2025年09月03日	10:44-11:16	15.37	13.76
		12:02-12:34	14.07	13.81
		12:42-13:14	14.68	14.73
		13:22-13:54	14.67	14.08
		14:03-14:35	14.92	13.37
比对监测结果	平均值	平均值		13.95
	绝对误差 (m/s)		1	
	相对误差(%)		-5.4	
	技术要求		≤±1	10%

1



第 19 页 共 25 页

#### 14. 污染源烟气中二氧化硫比对监测结果

监测点位	比对时	间	参比方法 (mg/m³)	CEMS 注 (mg/m³)
		10:27-10:32	19	19.1
		11:18-11:23	18	21
		11:55-12:00	7	20.4
		12:34-12:39	9	11.7
6#炉	2025年09月03日	13:15-13:20	7	9.4
		13:55-14:00	32	39.9
		14:02-14:07	21	19.5
		14:09-14:14	34	41
		14:16-14:21	53	53.1
	平均值	Ī	22.2	26.1
比对监测结果	绝对误差(m	ng/m³)	3	.9
	相对误差	1	7	
	技术要求	8	≤±17:	mg/m³



第 20 页 共 25 页

#### 15. 污染源烟气中氮氧化物比对监测结果

监测点位	比对时	间	参比方法 (mg/m³)	CEMS 注 (mg/m³)
		10:27-10:32	119	110.9
		11:18-11:23	100	96.4
		11:55-12:00	81	78.1
		12:34-12:39	94	90
6#炒	2025年09月03日	13:15-13:20	63	65.4
		13:55-14:00	95	84
		14:02-14:07	94	84.4
		14:09-14:14	93	81.3
		14:16-14:21	94	81.6
	平均值	Ĭ	92.4	85.8
比对监测结果	绝对误差(n		ſ	
	相对误差	-5	7.1	
	技术要求		≤±;	30%



第 21 页 共 25 页

#### 16. 污染源烟气中氧气比对监测结果

监测点位	比对印	计间	参比方法 A (%)	CEMS 法 B (%)	数据对差 =B-A
		10:27-10:32	7.94	7.72	-0.22
		11:18-11:23	7.21	7.32	0.11
		11:55-12:00	7.97	7.98	0.01
		12:34-12:39	7.63	7.58	-0.05
6#炉	2025年09月03日	13:15-13:20	9.33	9.44	0.11
		13:55-14:00	6.49	6.24	-0.25
		14:02-14:07	6.64	7.28	0.64
		14:09-14:14	7.19	6.7	-0.49
		14:16-14:21	6.77	7.08	0.31
		比对监测结果		氧气技	术要求
	参比方法	平均值	7.46		
e u his	数据对差的平均	均值的绝对值	0.02		
6#炸	数据对差的	数据对差的标准偏差		相对准确度≤15%	
	置信系数	绝对值	0.25		
	相对准确点	度 (%)	3.6		



第 22 页 共 25 页

#### 17. 污染源烟气中氯化氢比对监测结果

监测点位	比对时	比对时间		CEMS 法 (mg/m³)
		10:38-10:53	23.0	14.4
		10:56-11:11	24.0	9.3
		11:26-11:41	16,3	20.2
		11:45-12:00	25.2	16.5
6#炒1	2025年09月03日	12:15-12:30	29.7	10.6
		12:42-12:57	21.7	21.0
		13:22-13:37	21.9	24.3
		13:39-13:54	22.1	54.6
		14:04-14:19	24.1	24.0
	平均值(mg	g/m³)	23.1	21.7
比对监测结果	绝对误差(m	绝对误差(mg/m³)		1
	相对误差(	-(	5.1	
	技术要求		≤± ·	40%



第 23 页 共 25 页

#### 18. 污染源烟气中一氧化碳比对监测结果

监测点位	比对时	目	参比方法 (mg/m³)	CEMS 注 (mg/m³)
		10:27-10:32	ND(0.4)	0.8
		11:18-11:23	16	11.8
		11:55-12:00	ND(0)	0.2
		12:34-12:39	ND(0)	0.2
6#炒	2025年09月03日	13:15-13:20	ND(0.8)	1.7
		13:55-14:00	16	19.2
		14:02-14:07	ND(0.9)	0.5
		14:09-14:14	ND(0.1)	1
		14:16-14:21	ND(0)	0.2
	平均值(mg	/m³)	3.8	4.0
比对监测结果	绝对误差(m	g/m³)	0	.2
	相对误差(	(%)		T.
	技术要求	59	≤±8n	ng/m³



第 24 页 共 25 页

#### 八、比对监测结论

监测结果表明: 武汉市绿色环保能源有限公司 5#炉、6#炉本次比对监测结果均合格。

编制人: 李芩莹

审核人:

母名

签发人:

惠城

日期: 2025-09-12

日期:

2025-09-12 日期:

2025-09-14



第 25 页 共 25 页

#### 附图: 现场监测照片





5#炉

6#炉

***报告结束***

#### 附件 21-2: 有组织废气二噁英检测报告



Q/WP-WHAEED-R-771 A/1



编号: WHA-j-34-25080056-02-JC-01C1

有组织废气 样品类型:

现场采样 样品来源:

湖北鑫承胜咨询有限公司 委托单位:

武汉市绿色环保能源有限公司 受检单位:

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源

化预处理及环保提标改造 (炉排炉改造) 项目竣

项目名称: 工环保验收监测

> 湖北微谱技术有限公司 echnology Co.Ltd. Hubei WHII



Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C1

### 声明

- 一、本报告须经编制人、审核人及签发人签字,加盖本公司检验检测专用章和计量认证 章后方可生效;
- 二、对委托单位自行采集的样品,本公司仅对送检样品的测试数据负责,对送检样品来源、客户送样未按技术规范保存样品导致的结果偏差不负责,委托方对送检样品及其相关信息的真实性负责,采样样品的检测结果只代表检测时污染物排放状况。
  - 三、本公司对报告真实性、合法性、适用性、科学性负责。
- 四、用户对本报告提供的检测数据若有异议,可在收到本报告 15 日内,向本公司质量 部提出申诉。申诉采用来访、来电、来信、电子邮件的方式均可,超过申诉期限,概不受理。
- 五、未经许可,不得复制本报告(全文复制除外);任何对本报告未经授权之涂改、伪造、变更及不当使用均属违法,其责任人将承担相关法律及经济责任,我公司保留对上述违法行为追究法律责任的权利。
  - 六、我公司对本报告的检测数据保守秘密。
- 七、除客户特别声明并支付样品管理费以外,所有样品超过规定的时效期均不再留样。 无法复现的样品,不受理申诉。
  - 八、报告检测结果中如附执行标准,该执行标准由客户提供。
- 九、未加盖 CMA 标识的报告仅为科研、教学或内部质量控制使用,不具有社会证明作用。
  - 十、如对报告真伪有异议,可邮件我司,咨询邮箱为 shzlb@weipugroup.com。

地: 武汉市江夏区经济开发区藏龙岛梁山头村武汉拓创科技有限公司拓创科技产业园 三期厂房 D 栋 1-2 楼

邮政编码: 430000

电 话: 4007008005 投诉电话: 4007000699



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 1/21

### 检测报告

项目编号	HEH432			
委托单位	湖北鑫承胜咨询有限公司	A	8	ign.
委托单位地址	湖北省红安县城关镇红金龙大道十六	号二楼	D. Salar	SUE
受检单位	武汉市绿色环保能源有限公司	2º Elle	0.00	
受检单位地址	武汉市江夏区郑店街雷竹村	Day.	900	8
项目名称	武汉城市生活垃圾焚烧发电厂生活垃 (炉排炉改造)项目竣工环保验收监		化预处理及环位	呆提标改造
委托方式	采样检测			
样品类型	有组织废气	S IN IN	de	0,,
采样日期	2025.08.24 ~ 2025.08.25  2025.09.05 ~ 2025.09.06	检测周期	2025.08.24 ~	2025.09.28
检测结果	有组织废气检测结果见附表 1			
检测依据	见表 2		W. F.	

此报告经下列人员签名

编制:

交别

审核:

鹏

签发: 他艺感

签发日期

2025-09-30





Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 2/21

### 检测报告

#### 1. 检测内容

样品类型	采样位置	点位坐标	检测项目	样品编号	采样员
	100	Des		HEH432001A001	罗卫,魏德波
有组织废气				HEH432001A002	罗卫,魏德波
	5#生活垃圾焚	E:114.215100°,	with the ale	HEH432001A003	罗卫,魏德波
	烧炉	N:30,356578°	二噁英类	HEH432001B001	罗卫,魏德波
	D. B. B.		arth.	HEH432001B002	罗卫、魏德波
				HEH432001B003	罗卫,魏德波
	2000	420		HEH432002A001	陈家骏,周甲
				HEH432002A002	陈家骏,周甲
有组织废气	6#生活垃圾焚	E:114.190040°,	二噁英类	HEH432002A003	陈家骏,周甲
有组织 <b>灰</b> 飞	烧炉	N:30.336580°	二%夹尖	HEH432002B001	陈家骏,周甲
				HEH432002B002	陈家骏,周甲
				HEH432002B003	陈家骏、周甲

#### 2. 检测分析方法

样品类型	检测项目	检测分析方法	检测仪器
有组织废气	采样依据	HJ 916-2017 环境二噁英类监测技术规范	1 100
有组织废气	二噁英类	环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 HJ 77.2-2008	废气二噁英采样器 -ZR-3720 (11800921060390) 废气二噁英采样器 -ZR-3720 (11800922070544) 高分辨气相色谱-高分辨 质谱仪-DFS (11800220110234)

***本页完***





Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 3 / 页码: 3/21

### 检测报告

#### 3. 检测结果

#### 3.1 有组织废气

		3		毒性当	量浓度	GB 18485-2014	
采样时间	采样位置	样品编号	检测项目	检测结果	平均值	生活垃圾焚烧 污染控制标准 表 4 测定均值	单位
2025-09-0 5 10:53 - 2025-09-0 5 12:53	BIE .	HEH43200 1A001	二噁英类	0,024	S. T. III.	S.E.E.	ng TEQ/m³
2025-09-0 5 13:27 ~ 2025-09-0 5 15:27	Sim	HEH43200 1A002	二噁英类	0.013	0.013	≤0.1	ng TEQ/m³
2025-09-0 5 16:00 ~ 2025-09-0 5 18:00	5#生活垃	HEH43200 1A003	二噁英类	2.6×10 ⁻³	S III.		ng TEQ/m³
2025-09-0 6 09:28 ~ 2025-09-0 6 11:28	圾焚烧炉	HEH43200 1B001	二噁英类	4.8×10 ⁻³	25.20	7. TELE	ng TEQ/m³
2025-09-0 6 11:59 ~ 2025-09-0 6 13:59	\$ \$	HEH43200 1B002	二噁英类	1.5×10 ⁻³	2.8×10 ⁻³	≤0,1	ng TEQ/m³
2025-09-0 6 14:30 ~ 2025-09-0 6 16:30		HEH43200 1B003	二噁英类	2.1×10 ⁻³			ng TEQ/m³

***本页完***





Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **4/21** 

### 检测报告

				毒性当	量浓度	GB 18485-2014	
采样时间 采样位置	样品编号	检测项目	检测结果	平均值	生活垃圾焚烧 污染控制标准 表 4 测定均值	单位	
2025-08-2 4 12:37 ~ 2025-08-2 4 14:37	ETIE S	HEH43200 2A001	二噁英类	2.7×10 ⁻³	S.E.E.		ng TEQ/m³
2025-08-2 4 15:07 ~ 2025-08-2 4 17:07	STE	HEH43200 2A002	二噁英类	3.0×10 ⁻³	3.0×10 ⁻³	≤0.1	ng TEQ/m³
2025-08-2 4 17:37 ~ 2025-08-2 4 19:37	6#生活垃	HEH43200 2A003	二噁英类	3,2×10 ⁻³	SEE		ng TEQ/m³
2025-08-2 5 09:30 ~ 2025-08-2 5 11:30	圾焚烧炉	HEH43200 2B001	二噁英类	2.8×10 ⁻³	D. B. B.	Dig	ng TEQ/m³
2025-08-2 5 12:00 ~ 2025-08-2 5 14:00	5. ¹	HEH43200 2B002	二噁英类	2.4×10 ⁻³	3.0×10 ⁻³	≤0.1	ng TEQ/m³
2025-08-2 5 14:30 ~ 2025-08-2 5 16:30	Dalle.	HEH43200 2B003	二噁英类	3.9×10 ⁻³	S.E.E.		ng TEQ/m³

注: 1、详细检测结果见附表 1。

***本页完***



Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 5/21

### 检测报告



◎6#生活垃圾焚烧炉



◎6#生活垃圾焚烧炉



◎5#生活垃圾焚烧炉



◎5#生活垃圾焚烧炉

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 6/21

### 检测报告

#### 附表 1 检测结果

采样位	<b>?样位置</b>		Din.	5#生活垃	圾焚烧炉		N. S. S. S.	
采样时间			025-09-05 10:53 ~ 2025-09-05 12:53		H.	HEH432001A001		
检测项目		脚で 日	实测浓度	检出限	换算浓度	毒性当量浓	度 (TEQ)	
		<b>则-贝</b> 日	ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³	
2,3,7		3,7,8-T ₄ CDF	0.029	0.0002	0.034	0.1	0.0034	
6	1,2	3,7,8-P5CDF	0.014	0.0003	0.016	0.05	0.00080	
8	2,3	4,7,8-P5CDF	0.016	0.0002	0.019	0.5	0.0095	
R L	1,2,3	,4,7,8-H ₆ CDF	0.0097	0.0003	0.011	0.1	0.0011	
13/8	1,2,3,6,7,8-H ₆ CDF		0.010	0.0004	0.012	0.1	0.0012	
ķ.	1.2.3	,6,7,8-H ₆ CDF	0.011	0.0002	0.013	0.1	0.0013	
‡		,7,8,9-H ₆ CDF	0.0017	0.0002	0.0020	0.1	0.00020	
有	1,2,3,	4,6,7,8-H ₇ CDF	0.053	0.0004	0.062	0.01	0.00062	
	1,2,3,	4,7,8,9-H ₇ CDF	0.0042	0.0002	0.0049	0.01	0.000049	
		O ₈ CDF	0.024	0.0003	0.028	0.001	0.000028	
3	2,3	,7,8-T ₄ CDD	0.0023	0.00005	0.0027	1	0.0027	
Z	1,2,	3,7,8-P ₅ CDD	0.0040	0.0002	0.0047	0.5	0.00235	
÷ _	1,2,3	,4,7,8-H ₆ CDD	0.0012	0,0003	0.0014	0.1	0.00014	
E		,6,7,8-H ₆ CDD	0.0020	0.0004	0.0023	0.1	0.00023	
f- +		1,2,3	,7,8,9-H ₆ CDD	0,0023	0.0002	0.0027	0,1	0,00027
1,2,3,4,	4,6,7,8-H ₇ CDD	0.010	0.0002	0.012	0.01	0,00012		
É	O ₈ CDD		0.020	0,0002	0.023	0,001	0,000023	
		英总量∑ s+PCDFs)		di-	0	782	0.024	

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 7/21

### 检测报告

#### 续上表

采村	作位置	er in the		5#生活垃	圾焚烧炉		
采样时间		2025-09-05 13:2 15:	27 ~ 2025 <b>-</b> 09-05	样品编号		HEH432001A002	2
U	检测项目		实测浓度	检出限	换算浓度	毒性当量浓	度 (TEQ)
			ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³
	2,3,7,8-T ₄ CDF		0.022	0.0002	0.020	0.1	0.002
	1,2	,3,7,8-P5CDF	0.011	0.0003	0.010	0.05	0.00050
8	2,3	,4,7,8-P₅CDF	0.014	0.0002	0.013	0.5	0.0065
N C	1,2,3	3,4,7,8-H ₆ CDF	0.0043	0.0003	0.0039	0.1	0.00039
	1,2,3	3,6,7,8-H ₆ CDF	0.0040	0.0004	0.0036	0.1	0,00036
Ė	1.2	1,6,7,8-H ₆ CDF	0.0037	0.0002	0.0034	0.1	0.00034
f .		3,7,8,9-H ₆ CDF	0.0002	0,0002	0.00018	0.1	0.000018
南	1,2,3	,4,6,7,8-H ₇ CDF	0.0080	0.0004	0.0073	0.01	0.000073
	1,2,3	,4,7,8,9-H ₇ CDF	0.0015	0.0002	0.0014	0.01	0.000014
		O ₈ CDF	N.D.	0.0003	0.00027	0.001	0.00000013
3	2,5	3,7,8-T ₄ CDD	0.0016	0.00006	0.0015	1	0.0015
N P	1,2	,3,7,8-P ₅ CDD	0.0032	0.0002	0.0029	0.5	0.00145
-	1,2,3	3,4,7,8-H ₆ CDD	N.D.	0,0003	0.00027	0.1	0.0000135
E	1,2,3	3,6,7,8-H ₆ CDD	0.0016	0.0004	0.0015	0.1	0.00015
1,2,2	1,2,3	3,7,8,9-H ₆ CDD	0.0011	0.0002	0.0010	0.1	0.00010
1,2,3		4,6,7,8-H ₇ CDD	0.0056	0.0002	0.0051	0.01	0.000051
態度	O ₈ CDD		0.0095	0.0002	0.0086	0.001	0.0000086
31		英总量∑ S+PCDFs)		<u></u>	0	2,62	0.013

***本页完***

武汉市江夏区经济开发区藏龙岛梁山头村武汉拓创科技有限公司拓创科技产业园三期厂房 D 栋 1-2 楼 4007008005 www.wsipugroup.com

į





Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **8/21** 

### 检测报告

#### 绿上表

采样	位置			5#生活垃	圾焚烧炉		
采样	时间	2025-09-05 16:0 18:	00 ~ 2025 <b>-</b> 09-05	样品编号	HEH432001A003		
	检测项目		实测浓度	检出限	换算浓度	毒性当量浓	度 (TEQ)
	100.0	<b>则</b> 坝日	ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³
	2,3	3,7,8-T ₄ CDF	0.0053	0.0002	0.0038	0.1	0.00038
8	1,2	,3,7,8-P5CDF	0.0023	0.0003	0.0016	0.05	0.000080
多	2,3	,4,7,8-P₅CDF	0.0026	0.0002	0.0019	0.5	0.00095
観 代	1,2,3	3,4,7,8-H ₆ CDF	0.0011	0.0003	0.00079	0.1	0.000079
	1,2,3	3,6,7,8-H ₆ CDF	0.0011	0.0004	0.00079	0.1	0.000079
4:	2,3,4,6,7,8-H ₆ CDF		0.0013	0.0002	0.00093	0.1	0.000093
并 失	1,2,3	3,7,8,9-H ₆ CDF	N.D.	0.0002	0.00014	0.1	0.0000070
兩	1,2,3,4,6,7,8-H ₇ CDF		0.0027	0.0004	0.0019	0.01	0.000019
ò	1,2,3,	,4,7,8,9-H ₇ CDF	N.D.	0.0002	0.00014	0.01	0.00000070
		O ₈ CDF	N.D.	0.0003	0.00021	0.001	0.00000010
8	2,3	3,7,8-T ₄ CDD	N.D.	0.00006	0.000043	1	0.0000215
氣 代	1,2,	3,7,8-P5CDD	0.0022	0.0002	0.0016	0.5	0.00080
=	1,2,3	3,4,7,8-H ₆ CDD	0.0006	0,0003	0.00043	0.1	0.000043
¥.	1,2,3	3,6,7,8-H ₆ CDD	N.D.	0.0004	0.00029	0.1	0.0000145
并	1,2,3	3,7,8,9-H ₆ CDD	0.0005	0.0002	0.00036	0.1	0.000036
付二	1,2,3,	4,6,7,8-H ₇ CDD	N.D.	0.0002	0.00014	0.01	0,00000070
思		O ₈ CDD	N.D.	0,0002	0.00014	0.001	0.00000007
37		英 Øs+PCDFs)		\$	0	200	2.6×10 ⁻³

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 9/21

### 检测报告

#### 续上表

采林	羊位置	C (11/11)	5#生活垃圾焚烧炉							
采林	羊时间	2025-09-06 09:2 11:		样品编号	(1) I	HEH432001B001				
	443	<b>则项目</b>	实测浓度	检出限	换算浓度	毒性当量浓度(TEQ)				
	100.4	<b>财</b> -坝 日	ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³			
	2,3	3,7,8-T ₄ CDF	0.0038	0.0002	0.0034	0.1	0.00034			
	1,2	,3,7,8-P5CDF	0.0031	0.0003	0.0028	0.05	0.00014			
多	2,3	,4,7,8-P₅CDF	0.0043	0.0002	0.0039	0.5	0.00195			
氯代	1,2,3	3,4,7,8-H ₆ CDF	0.0023	0.0003	0.0021	0.1	0.00021			
=	1,2,3	3,6,7,8-H ₆ CDF	0.0024	0.0004	0.0022	0.1	0,00022			
苯	2,3,4,6,7,8-H ₆ CDF		0.0018	0.0002	0.0016	0.1	0.00016			
并呋	1,2,3	3,7,8,9-H ₆ CDF	0.0003	0.0002	0.00027	0.1	0.000027			
喃	1,2,3,4,6,7,8-H ₇ CDF		0.0057	0.0004	0.0051	0.01	0.000051			
	1,2,3,	,4,7,8,9-H ₇ CDF	0.0010	0.0002	0.00090	0.01	0.0000090			
		O ₈ CDF	N.D.	0.0003	0.00027	0.001	0.00000013			
3	2,3	3,7,8-T ₄ CDD	0.00089	0.00006	0.00080	1	0.00080			
氣代	1,2,	3,7,8-P5CDD	0.0015	0.0002	0.0014	0.5	0.00070			
	1,2,3	3,4,7,8-H ₆ CDD	0.0007	0,0003	0.00063	0.1	0,000063			
苯	1,2,3	3,6,7,8-H ₆ CDD	0.0006	0.0004	0.00054	0.1	0.000054			
并对二	1,2,3	3,7,8,9-H ₆ CDD	0.0006	0.0002	0.00054	0.1	0.000054			
	1,2,3,	4,6,7,8-H ₇ CDD	0.0036	0.0002	0.0032	0.01	0.000032			
態英		O ₈ CDD	0.010	0,0002	0.0090	0.001	0.0000090			
707	二噁英类总量∑ (PCDDs+PCDFs)			<u> </u>	1	2,62	4.8×10-3			

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **10/21** 

### 检测报告

#### 续上表

采林	羊位置			5#生活垃	圾焚烧炉		
采林	羊时间	2025-09-06 11:5 13:		样品编号 检出限	HEH432001B002		
	443	则项目	实测浓度		换算浓度	毒性当量浓度(TEQ)	
	THE UNIT OF THE PARTY OF THE PA		ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³
	2,3	3,7,8-T ₄ CDF	0.0026	0.0002	0.0022	0.1	0.00022
	1,2	,3,7,8-P5CDF	0.0013	0.0003	0.0011	0.05	0.000055
多	2,3	,4,7,8-P5CDF	0.0021	0.0002	0.0018	0.5	0.00090
氯代	1,2,3	3,4,7,8-H ₆ CDF	0.0007	0.0003	0.00060	0.1	0.000060
1	1,2,3	3,6,7,8-H ₆ CDF	0.0008	0.0004	0.00069	0.1	0.000069
苯	2,3,4,6,7,8-H ₆ CDF		N.D.	0.0002	0.00017	0.1	0.0000085
并呋	1,2,3	3,7,8,9-H ₆ CDF	N.D.	0.0002	0.00017	0.1	0.0000085
喃	1,2,3,4,6,7,8-H ₇ CDF		0.0019	0.0004	0.0016	0.01	0.000016
	1,2,3,	4,7,8,9-H ₇ CDF	0.0010	0.0002	0.00086	0.01	0.0000086
		O ₈ CDF	N.D.	0.0003	0.00026	0.001	0.00000013
多	2,3	3,7,8-T ₄ CDD	N.D.	0.00006	0.000052	1	0.000026
瓦代	1,2,	3,7,8-P5CDD	N.D.	0.0002	0.00017	0.5	0.0000425
	1,2,3	,4,7,8-H ₆ CDD	0.0004	0,0003	0.00034	0.1	0.000034
苯	1,2,3	,6,7,8-H ₆ CDD	N.D.	0.0004	0.00034	0.1	0.000017
并对二	1,2,3	,7,8,9-H ₆ CDD	N.D.	0.0002	0.00017	0.1	0.0000085
	1,2,3,	4,6,7,8-H ₇ CDD	0.0022	0.0002	0.0019	0.01	0.000019
噁 英		O ₈ CDD	0.025	0.0002	0.022	0.001	0,000022
二噁英类总量∑ (PCDDs+PCDFs)		12-	1	2,00	1.5×10 ⁻³		

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 11/21

### 检测报告

#### 续上表

采样	位置	200		5#生活垃	圾焚烧炉		
采样	的间	2025-09-06 14:3 16:		样品编号	HEH432001B003		
U	44.3	584-55 CI	实测浓度	检出限	换算浓度	毒性当量浓	度 (TEQ)
	100.0	<b>则</b> 项目	ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³
	2,3	3,7,8-T ₄ CDF	0.0035	0.0002	0.0030	0.1	0.00030
100	1,2	,3,7,8-P5CDF	0.0015	0.0003	0.0013	0.05	0.000065
多	2,3	,4,7,8-P5CDF	0.0020	0.0002	0.0017	0.5	0.00085
氯代	1,2,3	3,4,7,8-H ₆ CDF	0.0008	0.0003	0.00069	0.1	0.000069
=	1,2,3	3,6,7,8-H ₆ CDF	0.0008	0.0004	0.00069	0.1	0,000069
苯	2,3,4,6,7,8-H ₆ CDF		0.0012	0.0002	0.0010	0.1	0.00010
并味	1,2,3,7,8,9-H ₆ CDF		0.0002	0,0002	0.00017	0.1	0.000017
喃	1,2,3,4,6,7,8-H ₇ CDF		0.0024	0.0004	0.0021	0.01	0.000021
	1,2,3,	,4,7,8,9-H ₇ CDF	0.0012	0.0002	0.0010	0.01	0.000010
		O ₈ CDF	N.D.	0.0003	0.00026	0.001	0.00000013
多	2,3	3,7,8-T ₄ CDD	N.D.	0.00006	0.000052	1	0.000026
氣代	1,2,	3,7,8-P5CDD	0.0009	0.0002	0.00078	0.5	0.00039
=	1,2,3	3,4,7,8-H ₆ CDD	N.D.	0.0003	0.00026	0.1	0,000013
苯	1,2,3	3,6,7,8-H ₆ CDD	0.0006	0.0004	0.00052	0.1	0.000052
并对二	1,2,3	3,7,8,9-H ₆ CDD	0.0007	0.0002	0.00060	0.1	0.000060
	1,2,3,	4,6,7,8-H ₇ CDD	0.0022	0.0002	0.0019	0.01	0.000019
噁 英		O ₈ CDD	N.D.	0.0002	0.00017	0.001	0.00000008
30 Y		度类总量∑ Os+PCDFs)		1	1	2.00	2.1×10-3

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **12 / 21** 

### 检测报告

#### 续上表

采样位	立置	12 10 m		6#生活垃	圾焚烧炉		_ (III)
采样的	时间	2025-08-24 12:37 ~ 2025-08-24 14:37		样品编号	HEH432002A001		
	检测项目		实测浓度	检出限	换算浓度	毒性当量浓	度 (TEQ)
1至032人口		<b>对</b> 项目	ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³
	2,3	3,7,8-T ₄ CDF	0.0070	0.0002	0.0056	0.1	0.00056
8	1,2	,3,7,8-P5CDF	0.0026	0.0003	0.0021	0.05	0.000105
5	2,3	,4,7,8-P5CDF	0.0022	0.0002	0.0018	0.5	0,00090
t _	1,2,3	3,4,7,8-H ₆ CDF	0.0012	0.0003	0.00096	0.1	0.000096
13/8	1,2,3	3,6,7,8-H ₆ CDF	0.0011	0.0004	0.00088	0.1	0.000088
ŧ	2,3,4,6,7,8-H ₆ CDF		0.0008	0.0002	0.00064	0.1	0.000064
	1,2,3	3,7,8,9-H ₆ CDF	N.D.	0.0002	0.00016	0.1	0.0000080
Į į	1,2,3,4,6,7,8-H ₇ CDF		0.0028	0.0004	0.0022	0.01	0.000022
	1,2,3,	4,7,8,9-H ₇ CDF	N.D.	0.0002	0.00016	0.01	0.0000008
		O ₈ CDF	N.D.	0.0003	0.00024	0.001	0.0000001
200	2,3	3,7,8-T ₄ CDD	0.00096	0.00005	0.00077	1	0.00077
	1,2,	3,7,8-P ₅ CDD	N.D.	0.0002	0.00016	0.5	0.000040
	1,2,3	,4,7,8-H ₆ CDD	N.D.	0.0003	0.00024	0.1	0,000012
ŧ	1,2,3	,6,7,8-H ₆ CDD	N.D.	0.0004	0.00032	0.1	0.000016
f	1,2,3	7,8,9-H ₆ CDD	0.0005	0.0002	0.00040	0.1	0,000040
	1,2,3,	4,6,7,8-H ₇ CDD	0.0020	0.0002	0.0016	0.01	0.000016
感 英 O ₈ CDD		0.0059	0,0002	0.0047	0.001	0.0000047	
		E类总量∑ Os+PCDFs)		¢	1	200	2.7×10 ⁻³

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **13/21** 

### 检测报告

#### 续上表

采样	羊位置			6#生活垃	圾焚烧炉		
采村	羊时间	2025-08-24 15:0 17:		样品编号	HEH432002A002		
	443	则项目	实测浓度	检出限	换算浓度	毒性当量浓度(TEQ)	
	TELON-OCT		ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³
	2,3	3,7,8-T ₄ CDF	0.0082	0.0002	0.0057	0.1	0.00057
	1,2	,3,7,8-P5CDF	0.0028	0.0003	0.0020	0.05	0.00010
多	2,3	,4,7,8-P₅CDF	0.0040	0.0002	0.0028	0.5	0.0014
鼠代	1,2,3	3,4,7,8-H ₆ CDF	0.0016	0.0003	0.0011	0.1	0.00011
	1,2,3	3,6,7,8-H ₆ CDF	0.0013	0.0004	0.00091	0.1	0.000091
苯	2,3,4,6,7,8-H ₆ CDF		0.0017	0.0002	0.0012	0.1	0.00012
并 失	1,2,3,7,8,9-H ₆ CDF		0.0002	0,0002	0,00014	0.1	0.000014
喃	1,2,3,	4,6,7,8-H ₇ CDF	0.0044	0.0004	0.0031	0.01	0.000031
	1,2,3,	4,7,8,9-H ₇ CDF	0.0005	0.0002	0.00035	0.01	0.0000035
		O ₈ CDF	0.0041	0.0003	0.0029	0.001	0.0000029
8	2,3	3,7,8-T ₄ CDD	N.D.	0.00006	0.000042	1	0.000021
机七	1,2,	3,7,8-P ₅ CDD	0.0013	0.0002	0.00091	0.5	0.000455
_	1,2,3	,4,7,8-H ₆ CDD	0.0003	0,0003	0.00021	0.1	0,000021
K	1,2,3	,6,7,8-H ₆ CDD	0.0006	0.0004	0.00042	0.1	0.000042
并对二	1,2,3	,7,8,9-H ₆ CDD	0.0004	0.0002	0.00028	0.1	0.000028
	1,2,3,	4,6,7,8-H ₇ CDD	0.0034	0.0002	0.0024	0.01	0.000024
噁 英		O ₈ CDD	0.0092	0.0002	0.0064	0.001	0.0000064
31		E类总量∑ Os+PCDFs)		yb.	0	200	3.0×10 ⁻³

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **14/21** 

### 检测报告

#### 续上表

采样	羊位置	2 H 10		6#生活垃	圾焚烧炉		
采样	羊时间	2025-08-24 17:2 19:	37 ~ 2025 <b>-</b> 08 <b>-</b> 24	样品编号	HEH432002A003		
	44	<b>安测浓度</b> 检测项目		检出限	换算浓度	毒性当量浓	度 (TEQ)
	139.1	<b>网</b> 坝日	ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³
	2,3	3,7,8-T ₄ CDF	0.0074	0.0002	0.0056	0.1	0.00056
	1,2	,3,7,8-P5CDF	0.0029	0.0003	0.0022	0.05	0.00011
8	2,3	,4,7,8-P₅CDF	0.0027	0.0002	0.0021	0.5	0.00105
瓦七	1,2,3	3,4,7,8-H ₆ CDF	0.0015	0.0003	0.0011	0.1	0.00011
1	1,2,3	3,6,7,8-H ₆ CDF	0.0010	0.0004	0.00076	0.1	0,000076
£	2,3,4	1,6,7,8-H ₆ CDF	0.0007	0.0002	0.00053	0.1	0.000053
丰	1,2,3,7,8,9-H ₆ CDF		N.D.	0.0002	0.00015	0.1	0.0000075
南	1,2,3	,4,6,7,8-H ₇ CDF	0.0026	0.0004	0.0020	0.01	0.000020
	1,2,3	,4,7,8,9-H ₇ CDF	N.D.	0.0002	0.00015	0.01	0.00000075
		O ₈ CDF	N.D.	0.0003	0.00023	0.001	0.00000011
8	2,5	3,7,8-T ₄ CDD	0.00088	0.00006	0.00067	1	0.00067
N P	1,2	,3,7,8-P ₅ CDD	0.0011	0.0002	0.00084	0.5	0.00042
1	1,2,3	3,4,7,8-H ₆ CDD	N.D.	0,0003	0,00023	0.1	0.0000115
¢.	1,2,3	3,6,7,8-H₀CDD	N.D.	0.0004	0.00031	0.1	0.0000155
争	1,2,3	3,7,8,9-H ₆ CDD	0.0005	0.0002	0,00038	0.1	0.000038
1	1,2,3,	4,6,7,8-H ₇ CDD	0.0020	0.0002	0.0015	0.01	0.000015
<b>態</b> 英		O ₈ CDD	0.0060	0,0002	0.0046	0.001	0.0000046
31		英类总量∑ Os+PCDFs)		\$	0	2,02	3.2×10 ⁻³

***本页完***

武汉市江夏区经济开发区藏龙岛梁山头村武汉拓创科技有限公司拓创科技产业园三期厂房 D 栋 1-2 楼 4007008005 www.wsipugroup.com

H



j





Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 15/21

### 检测报告

#### 续上表

采样	作位置	Car lill feet		6#生活垃	圾焚烧炉		200
采柱	羊时间	2025-08-25 09:30 ~ 2025-08-25 11:30		样品编号	HEH432002B001		
	443	<b>则项目</b>	实测浓度	检出限	换算浓度	毒性当量浓	度 (TEQ)
	100.4	<b>财</b> 坝 日	ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m²
	2,3	3,7,8-T ₄ CDF	0.0099	0.0002	0.0074	0.1	0.00074
	1,2	,3,7,8-P5CDF	0.0034	0.0003	0.0025	0.05	0.000125
3	2,3	,4,7,8-P₅CDF	0.0036	0.0002	0.0027	0.5	0.00135
N.	1,2,3	3,4,7,8-H ₆ CDF	0.0022	0.0003	0.0016	0.1	0.00016
1	1,2,3	3,6,7,8-H ₆ CDF	0.0014	0.0004	0.0010	0.1	0,00010
4	2,3,4	1,6,7,8-H ₆ CDF	0.0015	0.0002	0.0011	0.1	0.00011
F E	1,2,3,7,8,9-H ₆ CDF		N.D.	0,0002	0.00015	0.1	0.0000075
植	1,2,3	,4,6,7,8-H ₇ CDF	0.0031	0.0004	0.0023	0.01	0.000023
	1,2,3,	,4,7,8,9-H ₇ CDF	0.0004	0.0002	0.00030	0.01	0.0000030
		O ₈ CDF	0.0027	0.0003	0.0020	0.001	0.0000020
3	2,3	3,7,8-T ₄ CDD	N.D.	0.00006	0.000045	1	0.0000225
E S	1,2,	3,7,8-P5CDD	N.D.	0.0002	0.00015	0.5	0.0000375
-	1,2,3	3,4,7,8-H ₆ CDD	0.0006	0,0003	0.00045	0.1	0.000045
¢.	1,2,3	3,6,7,8-H ₆ CDD	N.D.	0.0004	0.00030	0.1	0.000015
f-	1,2,3	3,7,8,9-H ₆ CDD	0.0003	0.0002	0.00022	0.1	0.000022
1	1,2,3,	4,6,7,8-H ₇ CDD	N.D.	0.0002	0.00015	0.01	0.0000007:
<b>選</b>		O ₈ CDD	0.0061	0,0002	0,0046	0.001	0.0000046
37		英总量∑ S+PCDFs)		<u></u>	1	302	2.8×10 ⁻³

***本页完***





Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **16/21** 

### 检测报告

#### 续上表

采样	作位置	62 10 Jan		6#生活垃	圾焚烧炉		200
采柱	羊时间	2025-08-25 12:00 ~ 2025-08-25 14:00		样品编号	HEH432002B002		
	443	<b>则项目</b>	实测浓度	检出限	换算浓度	毒性当量浓	度 (TEQ)
	100.4	<b>财</b> 坝 日	ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m²
	2,3	3,7,8-T ₄ CDF	0.0075	0.0002	0.0061	0.1	0.00061
	1,2	,3,7,8-P5CDF	0.0031	0.0003	0.0025	0.05	0.000125
8	2,3	,4,7,8-P₅CDF	0.0031	0.0002	0.0025	0.5	0.00125
N.	1,2,3	3,4,7,8-H ₆ CDF	0.0010	0.0003	0.00081	0.1	0.000081
1	1,2,3	3,6,7,8-H ₆ CDF	0.0010	0.0004	0.00081	0.1	0.000081
£	2,3,4	1,6,7,8-H ₆ CDF	0.0009	0.0002	0.00073	0.1	0.000073
<b>年</b>	1,2,3,7,8,9-H ₆ CDF		N.D.	0.0002	0.00016	0.1	0.0000080
南	1,2,3,	,4,6,7,8-H ₇ CDF	0.0029	0.0004	0.0024	0.01	0.000024
	1,2,3,	,4,7,8,9-H ₇ CDF	0.0002	0.0002	0.00016	0.01	0.0000016
		O ₈ CDF	N.D.	0.0003	0.00024	0.001	0.00000012
3	2,3	3,7,8-T ₄ CDD	N.D.	0.00006	0.000049	1	0.0000245
N P	1,2,	,3,7,8-P ₅ CDD	N.D.	0.0002	0.00016	0.5	0.000040
1	1,2,3	3,4,7,8-H ₆ CDD	N.D.	0,0003	0.00024	0.1	0.000012
¢.	1,2,3	3,6,7,8-H ₆ CDD	N.D.	0.0004	0.00033	0.1	0.0000165
争	1,2,3	3,7,8,9-H ₆ CDD	0.0003	0.0002	0.00024	0.1	0.000024
1	1,2,3,	4,6,7,8-H ₇ CDD	0.0017	0.0002	0.0014	0.01	0.000014
<b>感</b>		O ₈ CDD	0,0072	0,0002	0.0059	0.001	0.0000059
31		英总量∑ S+PCDFs)		<u></u>	1	200	2.4×10 ⁻³

***本页完***





Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 17/21

## 检测报告

#### 续上表

采林	羊位置			6#生活垃	圾焚烧炉		
采林	羊时间		30 ~ 2025 <b>-</b> 08 <b>-</b> 25	样品编号	HEH432002B003		
U	检测项目		实测浓度	检出限	换算浓度	毒性当量剂	效度(TEQ)
			ng/m³	ng/m³	ng/m³	I-TEF	ng TEQ/m³
	2,3	3,7,8-T ₄ CDF	0.0084	0.0002	0.0076	0.1	0.00076
	1,2	,3,7,8-P5CDF	0.0027	0.0003	0.0025	0.05	0.000125
多	2,3	,4,7,8-P5CDF	0.0030	0.0002	0.0027	0.5	0,00135
氯代	1,2,3	3,4,7,8-H ₆ CDF	0.0013	0.0003	0.0012	0.1	0.00012
Ξ.	1,2,3	3,6,7,8-H ₆ CDF	0.0011	0.0004	0.0010	0.1	0,00010
苯	2,3,4	1,6,7,8-H ₆ CDF	0.0011	0.0002	0.0010	0.1	0.00010
并呋	1,2,3	3,7,8,9-H ₆ CDF	N.D.	0.0002	0.00018	0.1	0,0000090
喃	1,2,3	4,6,7,8-H ₇ CDF	0.0031	0.0004	0.0028	0.01	0.000028
	1,2,3,	4,7,8,9-H ₇ CDF	N.D.	0.0002	0.00018	0.01	0.00000090
		O ₈ CDF	N.D.	0.0003	0.00027	0.001	0.000000135
多	2,3	3,7,8-T ₄ CDD	0.00097	0.00006	0.00088	1	0.00088
氯代	1,2,	3,7,8-P ₅ CDD	0,0006	0.0002	0.00055	0.5	0.000275
=	1,2,3	3,4,7,8-H ₆ CDD	N.D.	0.0003	0.00027	0.1	0.0000135
苯	1,2,3	3,6,7,8-H ₆ CDD	0.0006	0.0004	0.00055	0.1	0.000055
并对二	1,2,3	3,7,8,9-H ₆ CDD	0.0004	0.0002	0.00036	0.1	0.000036
	1,2,3,	4,6,7,8-H ₇ CDD	0.0019	0.0002	0.0017	0.01	0.000017
吧 英		O ₈ CDD	0.0079	0,0002	0.0072	0.001	0.0000072
70 7		英 总量∑ Os+PCDFs)		1/2	0	318 P	3.9×10 ⁻³

- 注: 1、实测浓度: 二噁英类浓度测定值:
- 2、毒性当量浓度(TEQ):实测浓度与该同类物的毒性当量因子(TEF)的乘积;二噁英毒性当量浓度为所有检测同类物毒性当量浓度之和;毒性当量因子(TEF)采用 I-TEF;
  - 3、毒性当量 (TEQ) 质量分数: 折算为相当于 2,3,7,8-T4CDD 的质量分数, ng/m3;
- 4、当样品的实测浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)浓度以 1/2 检出限计:
- 5、换算浓度: 二噁英类质量浓度的 11%含氧量换算值  $(ng/m^3)$ ;  $\rho=(21-11)/(21-\phi_s(O_2))$  × $\rho_s$  式中, $\phi_s(O_2)$ : 废气中含氧量,%。若废气中氧气体积分数超过 20%,则取 $\phi_s(O_2)$ =20。

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **18/21** 

### 检测报告

#### 4. 烟气参数

	检测点	点位: 5#生活垃圾梦	<b>焚烧炉</b>		
-	5 · 8	<b>脸测项目:</b> 二噁英类	ŧ	0>,	
	采	样时间: 2025.09.0	05		
	25-	时间段	9"	Sam	
参数	第一次	第二次	第三次	单位	
	10:53 - 12:53	13:27 - 15:27	16:00 - 18:00	8000	
排气筒高度	80	80	80	m	
大气压	99.8	99.7	99.7	kPa	
截面积	4.5239	4,5239	4.5239	m ²	
流速	18.0	17.2	17.5	m/s	
动压	167	150	154	Pa	
静压	-0.18	-0.19	-0.18	kPa	
含氧量	12.4	10.0	7.0	%	
烟温	175.8	177.2	175.8	C	
含湿量	16.75	16.73	17.65	%	
烟气流量	293148	280120	285005	m³/h	
标干流量	146043	138927	140183	m³/h	

***本页完***



4



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **19/21** 

### 检测报告

#### 续上表

	检测点	点位: 5#生活垃圾焚	烧炉		
-	5 - t	<b>俭测项目:</b> 二噁英类	§.	0>,	
	采	<b>经样时间: 2025.09.0</b>	6		
	时间段				
参数	第一次	第二次	第三次	单位	
100	09:28 - 11:28	11:59 - 13:59	14:30 - 16:30	B)	
排气筒高度	80	80	80	m	
大气压	100.3	100,2	100.0	kPa	
截面积	4.5239	4.5239	4.5239	m ²	
流速	17.5	16.9	17.4	m/s	
动压	154	146	151	Pa	
静压	-0.19	-0,20	-0.20	kPa	
含氧量	9.9	9.4	9,4	%	
烟温	176.2	175.9	176.5	C	
含湿量	17.01	19.88	18.03	%	
烟气流量	285005	275071	283214	m³/h	
标干流量	141932	132264	138926	m³/h	

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: **20/21** 

### 检测报告

#### 续上表

	检测点	点位:6#生活垃圾数	烧炉	
-	b b	<b>俭测项目:</b> 二噁英类	\$	25.
	采	·样时间: 2025.08.2	4 200	
		时间段		200
参数	第一次	第二次	第三次	单位
	12:37 - 14:37	15:07 - 17:07	17:37 - 19:37	0
排气筒高度	80	80	80	m
大气压	100.1	99.9	100.0	kPa
截面积	4.5239	4.5239	4.5239	m ²
流速	20.0	19.1	20.0	m/s
动压	199	185	199	Pa
静压	-0.18	-0.18	-0.18	kPa
含氧量	8.5	6.7	7.9	%
烟温	163.5	165,3	166.7	C
含湿量	22.81	24.52	27.81	%
烟气流量	325720	311063	325720	m³/h
标干流量	155022	143966	143800	m³/h

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C1 页码: 21/21

### 检测报告

#### 续上表

120	检测点	点位:6#生活垃圾梦	<b>步烧炉</b>	- 11/15
-	to the	<b>脸测项目:</b> 二噁英类	ŧ	0>-
	采	样时间: 2025.08.2	25	
		时间段		
参数	第一次	第二次	第三次	单位
	09:30 - 11:30	12:00 - 14:00	14:30 - 16:30	3
排气筒高度	80	80	80	m
大气压	100.2	100.1	100.0	kPa
截面积	4.5239	4,5239	4.5239	m ²
流速	19.3	19.9	19.0	m/s
动压	186	198	181	Pa
静压	-0.18	-0.18	-0.18	kPa
含氧量	7.6	8.7	10.0	%
烟温	163.5	161.4	160.9	C
含湿量	26.98	27.68	24.82	%
烟气流量	314157	323929	309434	m³/h
标干流量	141597	145208	144206	m³/h

***报告结束***

### 附件 21-3: 环境空气、土壤、固体废物二噁英检测报告



Q/WP-WHAEED-R-771 A/1



编号: WHA-j-34-25080056-02-JC-01C2

环境空气、土壤、固体废物 样品类型:

现场采样 样品来源:

湖北鑫承胜咨询有限公司 委托单位:

武汉市绿色环保能源有限公司 受检单位:

武汉城市生活垃圾焚烧发电厂生活垃圾分类资源

化预处理及环保提标改造 (炉排炉改造) 项目竣

项目名称: 工环保验收监测

> 湖北微谱技术有限公司 echnology Co.Ltd. Hubei WHII



Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C2

### 声明

- 一、本报告须经编制人、审核人及签发人签字,加盖本公司检验检测专用章和计量认证 章后方可生效;
- 二、对委托单位自行采集的样品,本公司仅对送检样品的测试数据负责,对送检样品来源、客户送样未按技术规范保存样品导致的结果偏差不负责,委托方对送检样品及其相关信息的真实性负责,采样样品的检测结果只代表检测时污染物排放状况。
  - 三、本公司对报告真实性、合法性、适用性、科学性负责。
- 四、用户对本报告提供的检测数据若有异议,可在收到本报告 15 日内,向本公司质量 部提出申诉。申诉采用来访、来电、来信、电子邮件的方式均可,超过申诉期限,概不受理。
- 五、未经许可,不得复制本报告(全文复制除外);任何对本报告未经授权之涂改、伪造、变更及不当使用均属违法,其责任人将承担相关法律及经济责任,我公司保留对上述违法行为追究法律责任的权利。
  - 六、我公司对本报告的检测数据保守秘密。
- 七、除客户特别声明并支付样品管理费以外,所有样品超过规定的时效期均不再留样。 无法复现的样品,不受理申诉。
  - 八、报告检测结果中如附执行标准,该执行标准由客户提供。
- 九、未加盖 CMA 标识的报告仅为科研、教学或内部质量控制使用,不具有社会证明作用。
  - 十、如对报告真伪有异议,可邮件我司,咨询邮箱为 shzlb@weipugroup.com。
- 地:武汉市江夏区经济开发区藏龙岛梁山头村武汉拓创科技有限公司拓创科技产业园 三期厂房 D 栋 1-2 楼

邮政编码: 430000

电 话: 4007008005 投诉电话: 4007000699



Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 1/28

## 检测报告

项目编号	НЕН432	
<b>坝日</b> 郷	HEH432	D
委托单位	湖北鑫承胜咨询有限公司	NE D
委托单位地址	湖北省红安县城关镇红金龙大道十	一六号二楼
受检单位	武汉市绿色环保能源有限公司	Sign.
受检单位地址	武汉市江夏区郑店街雷竹村	and a
项目名称	武汉城市生活垃圾焚烧发电厂生活 (炉排炉改造)项目竣工环保验收	5垃圾分类资源化预处理及环保提标改划 女监测
委托方式	采样检测	
样品类型	环境空气、土壤、固体废物	Day.
采样日期	2025.08.23 ~ 2025.08.26	检测周期 2025.08.23~2025.09.2
检测结果	环境空气检测结果见附表 1、土壤 附表 3	检测结果见附表 2、固体废物检测结果
检测依据	见表 2	

此报告经下列人员签名

编制: 交分

审核: 吴 那多

签发: 地艺感

签发日期 20

2025-09-30



Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 2/28

# 检测报告

#### 1. 检测内容

样品类型	采样位置	点位坐标	检测项目	样品编号	采样员
- 46		Des	二噁英类	HEH432003A001	陈仁鑫,许耕新
环境空气	张家岭	E:114.223309°, N:30.367242°		HEH432003B001	陈仁鑫,许耕新
	200	N.30.307242		HEH432003C001	陈仁鑫,许耕新
		E:114.208084°, N:30.343987°	二噁英类	HEH432004A001	陈仁鑫,许耕新
环境空气	双凤魏			HEH432004B001	陈仁鑫,许耕新
				HEH432004C001	陈仁鑫,许耕新
9	532	2a		HEH432005A001	陈仁鑫,许耕新
环境空气	尖山曹	E:114,217773°, N:30,347650°	二噁英类	HEH432005B001	陈仁鑫,许耕新
		14,50,547050		HEH432005C001	陈仁鑫,许耕新

样品类型	采样位置	点位坐标	检测项目	样品 编号	样品描述	采样员	采样深度 (m)
土壤	垃圾库旁	E:114.2138 06°, N:30.35665 8°	二噁英类	HEH4 32006 A001	棕褐色、无味、 潮、砂壤土、可 塑、稍密、少量 植被、少量根系	陈仁鑫,许 耕新	0-0.2
土壤	渗滤液处理站附近	E:114.2174 53°, N:30.35892 2°	二噁英类	HEH4 32007 A001	棕褐色、无味、 潮、砂壤土、可 塑、稍密、少量 植被、少量根系	陈仁鑫,许 耕新	0-0.2
土壤	张家岭农用地	E:114.2234 43°, N:30.36729 6°	二噁英类	HEH4 32008 A001	棕褐色、无味、 潮、砂壤土、可 塑、稍密、少量 植被、少量根系	陈仁鑫,许 耕新	0-0.2
土壤	双凤魏农用地	E:114.2083 70°, N:30.34393 0°	二噁英类	HEH4 32009 A001	棕褐色、无味、 潮、砂壤土、可 塑、稍密、少量 植被、少量根系	陈仁鑫,许 耕新	0-0.2

武汉市江夏区经济开发区藏龙岛梁山头村武汉拓创科技有限公司拓创科技产业园三期厂房 D 栋 1-2 楼 4007008005 www.wsipugroup.com

Ž,



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **3/28** 

### 检测报告

样品类型	采样位置	点位坐标	检测项目	样品编号	样品描述	采样员
飞灰固化车 E:114.215604°,	- 10% 10 344	HEH432010A0 01	颗粒状固体、 黑褐色、有味 儿刺激、干	陈仁鑫,许耕 新		
固体废物	间固化物	N:30.355080°	二噁英类	HEH432010B0 01	颗粒状固体、 黑褐色、有味 儿刺激、干	陈仁鑫,许耕

#### 2. 检测分析方法

样品类型	检测项目	检测分析方法	检测仪器
固体废物	采样依据	HJ/T 20-1998 工业固体废物采样制样技术规范	27
土壤	采样依据	土壤环境监测技术规范 HJ/T 166-2004	1
环境空气	采样依据	环境二噁英类监测技术规范 HJ 916-2017	1 5 22
环境空气	二噁英类	环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 HJ 77.2-2008	高分辨气相色谱-高分辨 质谱仪-DFS (11800220110234) 环境空气有机物采样器 -ZR3950 (11800920110114) 环境空气有机物采样器 -ZR-3950 型 (11800925050964) 便携式风向风速仪 -PLC-16025 (11800923100697) 环境空气有机物采样器 -ZR-3950 型 (11800921030340)
固体废物	二噁英类	固体废物 二噁英类的测定 同位素稀释高分辨 气相色谱-高分辨质谱法 HJ 77.3-2008	高分辨气相色谱-高分辨 质谱仪-DFS (11800220110234)
土壤	二噁英类	土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 HJ 77.4-2008	高分辨气相色谱-高分辨 质谱仪-DFS (11800220110234)

武汉市江夏区经济开发区藏龙岛梁山头村武汉拓创科技有限公司拓创科技产业园三期厂房 D 栋 1-2 楼 4007008005 www.wsipugroup.com

100

244



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **4/28** 

### 检测报告

#### 3. 检测结果

#### 3.1 环境空气

采样时间	形间 采样位 样品编号		检测项目	毒性当量浓度	日本环境空气	单位
		样品编号		检测结果	质量标准 年均 值	
2025-08-23 11:00 ~ 2025-08-24 09:00	23	HEH4320 03A001	二嗯英类	0.058	≤0.6	pg TEQ/m³
2025-08-24 11:40 ~ 2025-08-25 09:40	张家岭	HEH4320 03B001	二噁英类	0.082	≤0.6	pg TEQ/m³
2025-08-25 11:55 ~ 2025-08-26 09:55		HEH4320 03C001	二噁英类	6.3×10 ⁻³	≤0.6	pg TEQ/m³
2025-08-23 11:00 ~ 2025-08-24 09:00	双凤魏	HEH4320 04A001	二噁英类	0.011	≤0.6	pg TEQ/m³
2025-08-24 13:22 ~ 2025-08-25 11:22		HEH4320 04B001	二噁英类	0.012	≤0.6	pg TEQ/m³
2025-08-25 12:28 ~ 2025-08-26 10:28		HEH4320 04C001	二噁英类	0.10	≤0.6	pg TEQ/m³
2025-08-23 11:20 ~ 2025-08-24 09:20	尖山曹	HEH4320 05A001	二噁英类	0.073	≤0.6	pg TEQ/m³
2025-08-24 12:09 ~ 2025-08-25 10:09		HEH4320 05B001	二噁英类	0.11	≤0.6	pg TEQ/m³
2025-08-25 12:15 - 2025-08-26 10:15	Silin	HEH4320 05C001	二噁英类	0.022	≤0.6	pg TEQ/m³

注: 1、详细检测结果见附表 1。

#### 3.2 十壤

alla -	2	1,0	毒性当量浓度	GB 36600-2018		
采样时间	采样位置	样品编号	检测项目	检测结果	土壤环境质量 建设用地土壤 污染风险管控 标准 表 2 筛选 值第二类用地	单位
2025-08-24 10:37-10:39	垃圾库旁	HEH43200 6A001	二噁英类	3.5×10 ⁻⁶	≤4×10 ⁻⁵	mg TEQ/kg
2025-08-24 10:51-10:53	渗滤液处 理站附近	HEH43200 7A001	二噁英类	1.9×10 ⁻⁶	≤4×10 ⁻⁵	mg TEQ/kg

注: 1、详细检测结果见附表 2。





Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 5/28

# 检测报告

采样时间  采样位置	77 134 (A. 100) 134 E1 (A.) E1 (1A.) No.		14 MM-45 II	毒性当量浓度	M. /2.
	样品编号	检测项目	检测结果	单位	
2025-08-24 11:34-11:36	张家岭农用 地	HEH432008A 001	二噁英类	5.1×10 ⁻⁶	mg TEQ/kg
2025-08-24 12:30-12:32	双风魏农用 地	HEH432009A 001	二噁英类	2.0×10 ⁻⁶	mg TEQ/kg

注: 1、详细检测结果见附表 2。

## 3.3 固体废物

采样时间 采料	0-	2	September 1	毒性当量浓度	GB 16889-2024	
	采样位置	样品编号	检测项目	检测结果	生活垃圾填埋 场污染控制标 准 6.3 (a)	单位
2025-08-2 4 10:42	飞灰固化	HEH43201 0A001	二噁英类	0.0044	<3	μg TEQ/kg
2025-08-2 5 11:04	车间固化 物	HEH43201 0B001	二噁英类	0.0072	<3	μg TEQ/kg

注: 1、详细检测结果见附表 3。

***本页完***



Q/WP-WHAEED-R-771 A/1 056-02-JC-01C2 页码: 6 / 28 报告编号: WHA-j-34-25080056-02-JC-01C2

# 检测报告



〇张家岭



〇张家岭



〇张家岭



〇双凤魏



〇双凤魏



〇双凤魏

***本页完***



Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 7/28

# 检测报告



〇尖山曹



〇尖山曹



〇尖山曹



■渗滤液处理站附近



■张家岭农用地



■双凤魏农用地

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 8/28

## 检测报告



■垃圾库房





■飞灰固化车间固化物





■飞灰固化车间固化物

***本页完***



Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 9/28

# 检测报告

附表 1 检测结果

采样位置			张家岭		
采样时间	2025-08-23 11:00 ~ 20	25-08-24 09:00	样品编号	HEH432	003A001
To Carrie	LA Norwall ET	实测浓度	检出限	毒性当量浓	度 (TEQ)
	检测项目	pg/m³	pg/m³	I-TEF	pgTEQ/m³
	2,3,7,8-T ₄ CDF	0.022	0.0003	0.1	0.0022
17	1,2,3,7,8-P ₅ CDF	0.029	0.0004	0.05	0.00145
100	2,3,4,7,8-P5CDF	0.052	0.0003	0.5	0.026
	1,2,3,4,7,8-H ₆ CDF	0.057	0.0004	0.1	0.0057
多氯代二	1,2,3,6,7,8-H ₆ CDF	0.043	0.0005	0.1	0.0043
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.042	0.0004	0.1	0.0042
	1,2,3,7,8,9-H ₆ CDF	0.0053	0.0004	0.1	0.00053
	1,2,3,4,6,7,8-H ₇ CDF	0.15	0.0002	0.01	0.0015
	1,2,3,4,7,8,9-H ₇ CDF	0.012	0.0004	0.01	0,00012
700	O ₈ CDF	0.18	0.0004	0.001	0.00018
	2,3,7,8-T ₄ CDD	0.0021	0.0003	1	0.0021
P. P. L.	1,2,3,7,8-P ₅ CDD	0.013	0.0006	0,5	0.0065
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.0068	0.0002	0.1	0.00068
苯并对二	1,2,3,6,7,8-H ₆ CDD	0.0092	0.0002	0.1	0.00092
噁英	1,2,3,7,8,9-H ₆ CDD	0.0068	0.0005	0.1	0.00068
	1,2,3,4,6,7,8-H ₇ CDD	0.038	0.0008	0.01	0.00038
	O ₈ CDD	0.10	0.0006	0.001	0,00010
二噁英类总	量∑ (PCDDs+PCDFs)	200	- 226-		0.058

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **10/28** 

# 检测报告

### 续上表

采样位置			张家岭		
采样时间	2025-08-24 11:40 ~ 20	25-08-25 09:40	样品编号	HEH432	2003B001
	IA Not see Et	实测浓度	检出限	毒性当量浴	度(TEQ)
	检测项目	pg/m³	pg/m³	I-TEF	pgTEQ/m³
	2,3,7,8-T ₄ CDF	0.053	0.0003	0.1	0.0053
	1,2,3,7,8-P ₅ CDF	0.050	0.0004	0.05	0.0025
	2,3,4,7,8-P ₅ CDF	0.074	0.0003	0.5	0.037
	1,2,3,4,7,8-H ₆ CDF	0.067	0.0004	0.1	0.0067
多氯代二	1,2,3,6,7,8-H ₆ CDF	0.056	0.0005	0,1	0.0056
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.051	0.0004	0.1	0.0051
	1,2,3,7,8,9-H ₆ CDF	0.0053	0.0004	0.1	0.00053
	1,2,3,4,6,7,8-H ₇ CDF	0.13	0.0002	0.01	0.0013
	1,2,3,4,7,8,9-H ₇ CDF	0.0067	0.0004	0.01	0,000067
	O ₈ CDF	0.052	0.0004	0.001	0.000052
	2,3,7,8-T ₄ CDD	0.0046	0.0003	1	0.0046
	1,2,3,7,8-P ₅ CDD	0.020	0.0006	0.5	0.01
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.0095	0.0002	0.1	0.00095
苯并对二	1,2,3,6,7,8-H ₆ CDD	0.0099	0.0002	0.1	0.00099
噁英	1,2,3,7,8,9-H ₆ CDD	0.0082	0.0005	0.1	0.00082
	1,2,3,4,6,7,8-H ₇ CDD	0.039	0.0008	0.01	0.00039
	O ₈ CDD	0.094	0.0006	0.001	0.000094
嗯英类总	量∑ (PCDDs+PCDFs)	200	- Die		0.082

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 11/28

# 检测报告

#### 续上表

采样位置	0. III. III		张家岭		
采样时间	2025-08-25 11:55 ~ 20	025-08-26 09:55	样品编号	HEH43	2003C001
	Wallet D	实测浓度	检出限	毒性当量剂	皮度(TEQ)
	检测项目	pg/m³	pg/m³	I-TEF	pgTEQ/m³
	2,3,7,8-T ₄ CDF	0.013	0.0003	0.1	0.0013
	1,2,3,7,8-P ₅ CDF	0.0058	0.0004	0.05	0.00029
	2,3,4,7,8-P5CDF	0.0055	0.0003	0.5	0,00275
	1,2,3,4,7,8-H ₆ CDF	0.0020	0.0004	0.1	0,00020
多氯代二	1,2,3,6,7,8-H ₆ CDF	0.0017	0.0005	0,1	0.00017
举并呋喃	2,3,4,6,7,8-H ₆ CDF	0.0015	0.0004	0.1	0.00015
	1,2,3,7,8,9-H ₆ CDF	N.D.	0.0004	0.1	0.000020
	1,2,3,4,6,7,8-H ₇ CDF	0.0033	0.0002	0.01	0.000033
	1,2,3,4,7,8,9-H ₇ CDF	N.D.	0.0004	0.01	0,0000020
	O ₈ CDF	N.D.	0.0004	0.001	0.00000020
	2,3,7,8-T ₄ CDD	N.D.	0.0003	1	0.00015
	1,2,3,7,8-P ₅ CDD	0.0017	0.0006	0.5	0.00085
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.0008	0.0002	0.1	0.000080
举并对二	1,2,3,6,7,8-H ₆ CDD	0.0011	0.0002	0.1	0.00011
噁英	1,2,3,7,8,9-H ₆ CDD	0.0011	0.0005	0.1	0.00011
	1,2,3,4,6,7,8-H ₇ CDD	0.0060	0.0008	0.01	0,000060
	O ₈ CDD	0.010	0.0006	0.001	0.000010
嗯英类总	.量∑ (PCDDs+PCDFs)	337	No.		6.3×10 ⁻³

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **12/28** 

# 检测报告

## 续上表

采样位置			双凤魏		
采样时间	2025-08-23 11:00 ~ 20	25-08-24 09:00	样品编号	HEH432	004A001
	A SHIPE D	实测浓度	检出限	毒性当量浓	度 (TEQ)
	检测项目	pg/m³	pg/m³	I-TEF	pgTEQ/m³
	2,3,7,8-T ₄ CDF	0.0087	0.0003	0.1	0.00087
	1,2,3,7,8-P ₅ CDF	0.0087	0.0004	0.05	0.000435
	2,3,4,7,8-P ₅ CDF	0.0079	0.0003	0.5	0.00395
	1,2,3,4,7,8-H ₆ CDF	0.0099	0.0004	0.1	0,00099
多氯代二	1,2,3,6,7,8-H ₆ CDF	0.0092	0.0005	0.1	0.00092
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.0078	0.0004	0.1	0.00078
	1,2,3,7,8,9-H ₆ CDF	0.0009	0.0004	0.1	0.000090
	1,2,3,4,6,7,8-H ₇ CDF	0.036	0.0002	0.01	0.00036
	1,2,3,4,7,8,9-H ₇ CDF	0.0029	0.0004	0.01	0,000029
	O ₈ CDF	0.036	0.0004	0.001	0.000036
	2,3,7,8-T ₄ CDD	N.D.	0.0003	1	0.00015
	1,2,3,7,8-P ₅ CDD	0.0025	0.0006	0.5	0.00125
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.0018	0.0002	0.1	0.00018
苯并对二	1,2,3,6,7,8-H ₆ CDD	0.0022	0.0002	0.1	0.00022
噁英	1,2,3,7,8,9-H ₆ CDD	0.0014	0.0005	0.1	0.00014
	1,2,3,4,6,7,8-H ₇ CDD	0.022	0.0008	0.01	0.00022
	O ₈ CDD	0.097	0.0006	0.001	0.000097
二噁英类总	量∑ (PCDDs+PCDFs)	200	- Bus		0.011

***本页完***

武汉市江夏区经济开发区藏龙岛梁山头村武汉拓创科技有限公司拓创科技产业园三期厂房 D 栋 1-2 楼 4007008005 www.wsipugroup.com



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **13/28** 

# 检测报告

### 续上表

采样位置			双凤魏		
采样时间	2025-08-24 13:22 ~ 20	025-08-25 11:22	样品编号	HEH432	2004B001
	<b>松湖</b> 香口	实测浓度	检出限	毒性当量浓	度 (TEQ)
	检测项目	pg/m³	pg/m³	I-TEF	pgTEQ/m³
	2,3,7,8-T ₄ CDF	0.011	0.0003	0.1	0.0011
	1,2,3,7,8-P ₅ CDF	0.0091	0.0004	0.05	0.000455
	2,3,4,7,8-P ₅ CDF	0.0077	0.0003	0.5	0.00385
	1,2,3,4,7,8-H ₆ CDF	0.012	0.0004	0.1	0.0012
多氯代二	1,2,3,6,7,8-H ₆ CDF	0,0099	0.0005	0.1	0.00099
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.0090	0.0004	0.1	0.00090
	1,2,3,7,8,9-H ₆ CDF	0,0006	0.0004	0.1	0.000060
	1,2,3,4,6,7,8-H ₇ CDF	0.039	0.0002	0.01	0.00039
	1,2,3,4,7,8,9-H ₇ CDF	0,0038	0.0004	0.01	0,000038
	O ₈ CDF	0.032	0.0004	0.001	0.000032
	2,3,7,8-T ₄ CDD	0.0010	0.0003	1	0.001
	1,2,3,7,8-P ₅ CDD	0.0020	0.0006	0.5	0.001
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.0015	0.0002	0.1	0.00015
<b>举并对二</b>	1,2,3,6,7,8-H ₆ CDD	0.0019	0.0002	0.1	0.00019
噻英	1,2,3,7,8,9-H ₆ CDD	0.0016	0.0005	0.1	0.00016
	1,2,3,4,6,7,8-H ₇ CDD	0.020	0.0008	0.01	0.00020
	O ₈ CDD	0.11	0.0006	0.001	0.00011
嗯英类总	量∑ (PCDDs+PCDFs)	200	- Alle	-	0.012

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **14/28** 

# 检测报告

#### 续上表

采样位置	C. [11]		双凤魏		
采样时间	2025-08-25 12:28 ~ 20	025-08-26 10:28	样品编号	HEH432	2004C001
	Wante D	实测浓度	检出限	毒性当量浓度(TEQ)	
	检测项目	pg/m³	pg/m³	I-TEF	pgTEQ/m³
	2,3,7,8-T ₄ CDF	0.058	0.0003	0.1	0.0058
	1,2,3,7,8-P ₅ CDF	0.066	0.0004	0.05	0.0033
	2,3,4,7,8-P ₅ CDF	0.10	0.0003	0.5	0.05
	1,2,3,4,7,8-H ₆ CDF	0.071	0.0004	0.1	0,0071
多氯代二	1,2,3,6,7,8-H ₆ CDF	0.063	0.0005	0.1	0.0063
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.054	0.0004	0.1	0.0054
	1,2,3,7,8,9-H ₆ CDF	0.0013	0.0004	0.1	0.00013
	1,2,3,4,6,7,8-H ₇ CDF	0.13	0.0002	0.01	0.0013
	1,2,3,4,7,8,9-H ₇ CDF	0.010	0.0004	0.01	0,00010
	O ₈ CDF	0.056	0.0004	0.001	0.000056
	2,3,7,8-T ₄ CDD	0.0055	0.0003	1	0.0055
	1,2,3,7,8-P ₅ CDD	0.028	0.0006	0.5	0.014
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.0094	0.0002	0.1	0.00094
举并对二	1,2,3,6,7,8-H ₆ CDD	0.013	0.0002	0.1	0.0013
噁英	1,2,3,7,8,9-H ₆ CDD	0.012	0.0005	0.1	0.0012
	1,2,3,4,6,7,8-H ₇ CDD	0.054	0.0008	0.01	0.00054
	O ₈ CDD	0.19	0.0006	0.001	0.00019
嗯英类总	.量∑ (PCDDs+PCDFs)	30	Ditte		0.10

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 15/28

# 检测报告

### 续上表

采样位置	C. 12.12		尖山曹		
采样时间	2025-08-23 11:20 ~ 20	25-08-24 09:20	样品编号	HEH432	2005A001
	<b>₩</b> 测度日	实测浓度	检出限	毒性当量浴	度(TEQ)
	检测项目	pg/m³	pg/m³	I-TEF	pgTEQ/m³
	2,3,7,8-T ₄ CDF	0.050	0.0003	0.1	0.005
	1,2,3,7,8-PsCDF	0.049	0.0005	0.05	0.00245
	2,3,4,7,8-P ₅ CDF	0.065	0.0003	0.5	0.0325
	1,2,3,4,7,8-H ₆ CDF	0.055	0.0004	0.1	0.0055
多氯代二	1,2,3,6,7,8-H ₆ CDF	0.049	0.0006	0.1	0.0049
举并呋喃	2,3,4,6,7,8-H ₆ CDF	0.041	0.0005	0.1	0.0041
	1,2,3,7,8,9-H ₆ CDF	0.0017	0.0004	0.1	0.00017
	1,2,3,4,6,7,8-H ₇ CDF	0.13	0.0002	0.01	0.0013
	1,2,3,4,7,8,9-H ₇ CDF	0,0072	0.0005	0.01	0,000072
	O ₈ CDF	0.078	0.0004	0.001	0.000078
	2,3,7,8-T ₄ CDD	0.0041	0.0003	1	0.0041
	1,2,3,7,8-P ₅ CDD	0.021	0.0006	0.5	0.0105
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.0075	0.0002	0.1	0.00075
苯并对二	1,2,3,6,7,8-H ₆ CDD	0.0084	0.0002	0.1	0.00084
噁英	1,2,3,7,8,9-H ₆ CDD	0.0051	0.0006	0.1	0.00051
	1,2,3,4,6,7,8-H ₇ CDD	0.034	0.0008	0.01	0.00034
	O ₈ CDD	0.13	0.0006	0.001	0,00013
嗯英类总	量∑ (PCDDs+PCDFs)	200	- Alle-		0.073

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **16/28** 

# 检测报告

### 续上表

采样位置			尖山曹		
采样时间	2025-08-24 12:09 ~ 20	25-08-25 10:09	样品编号	HEH432	2005B001
	4A 381-75 D	实测浓度	检出限	毒性当量浓	度 (TEQ)
	检测项目	pg/m³	pg/m³	I-TEF	pgTEQ/m³
	2,3,7,8-T ₄ CDF	0.055	0.0003	0.1	0.0055
	1,2,3,7,8-P ₅ CDF	0.065	0.0005	0.05	0.00325
	2,3,4,7,8-P ₅ CDF	0.11	0.0003	0.5	0.055
	1,2,3,4,7,8-H ₆ CDF	0.082	0.0004	0.1	0.0082
多氯代二	1,2,3,6,7,8-H ₆ CDF	0.083	0.0005	0,1	0.0083
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.065	0.0005	0.1	0.0065
	1,2,3,7,8,9-H ₆ CDF	0.0053	0.0004	0.1	0.00053
	1,2,3,4,6,7,8-H ₇ CDF	0.15	0.0002	0.01	0.0015
	1,2,3,4,7,8,9-H ₇ CDF	0.0092	0.0005	0.01	0,000092
	O ₈ CDF	0.065	0.0004	0.001	0.000065
	2,3,7,8-T ₄ CDD	0.0044	0.0003	1	0.0044
	1,2,3,7,8-P ₅ CDD	0.027	0.0006	0.5	0.0135
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.010	0.0002	0.1	0.001
苯并对二	1,2,3,6,7,8-H ₆ CDD	0.011	0.0002	0.1	0.0011
噁英	1,2,3,7,8,9-H ₆ CDD	0.0094	0.0005	0.1	0.00094
	1,2,3,4,6,7,8-H ₇ CDD	0.039	0.0008	0.01	0.00039
	O ₈ CDD	0.081	0.0006	0.001	0.000081
二噁英类总	量∑ (PCDDs+PCDFs)	307	- 226		0.11

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 17/28

# 检测报告

### 续上表

采样位置			尖山曹		
采样时间	2025-08-25 12:15 ~ 20	25-08-26 10:15	样品编号	HEH432	2005C001
	LA NOV-SE ET	实测浓度	检出限	毒性当量浓	度 (TEQ)
	检测项目	pg/m³	pg/m³	I-TEF	pgTEQ/m³
	2,3,7,8-T ₄ CDF	0.017	0.0003	0.1	0.0017
	1,2,3,7,8-P ₅ CDF	0.020	0.0004	0.05	0.001
	2,3,4,7,8-P ₅ CDF	0.019	0.0003	0.5	0.0095
	1,2,3,4,7,8-H ₆ CDF	0.018	0.0004	0.1	0.0018
多氯代二	1,2,3,6,7,8-H ₆ CDF	0.018	0.0005	0,1	0.0018
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.015	0.0004	0.1	0.0015
	1,2,3,7,8,9-H ₆ CDF	0.0011	0.0004	0.1	0.00011
	1,2,3,4,6,7,8-H ₇ CDF	0.058	0.0002	0.01	0.00058
	1,2,3,4,7,8,9-H ₇ CDF	0,0068	0.0004	0.01	0,000068
	O ₈ CDF	0.053	0.0004	0.001	0.000053
	2,3,7,8-T ₄ CDD	N.D.	0.0003	1	0.00015
	1,2,3,7,8-P ₅ CDD	0.0039	0.0006	0.5	0.00195
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.0035	0.0002	0.1	0.00035
苯并对二	1,2,3,6,7,8-H ₆ CDD	0.0050	0.0002	0.1	0.00050
嗯英	1,2,3,7,8,9-H ₆ CDD	0.0046	0.0005	0.1	0.00046
	1,2,3,4,6,7,8-H ₇ CDD	0.045	0.0008	0.01	0.00045
	O ₈ CDD	0.24	0.0006	0.001	0.00024
- 嗯英类总	量∑ (PCDDs+PCDFs)	300	- Bus	<u> </u>	0.022

- 注: 1、实测浓度: 二噁英类浓度测定值;
- 2、毒性当量浓度(TEQ):实测浓度与该同类物的毒性当量因子(TEF)的乘积;二噁英毒性当量浓度为所有检测同类物毒性当量浓度之和;毒性当量因子(TEF)采用 I-TEF;
  - 3、毒性当量 (TEQ) 质量分数: 折算为相当于 2,3,7,8-T4CDD 的质量分数, pg/m³;
- 4、当样品的实测浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)浓度以 1/2 检出限 +。

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **18/28** 

# 检测报告

## 附表 2 检测结果

采样位置			垃圾库旁		
采样时间	2025-08-24 10:	37-10:39	样品编号	HEH432	006A001
	检测项目	实测浓度	检出限	毒性当量浓度(TEQ)	
	位拠項目	ng/kg	ng/kg	I-TEF	ng TEQ/kg
	2,3,7,8-T ₄ CDF	1.1	0.02	0.1	0.11
	1,2,3,7,8-P ₅ CDF	0.83	0.06	0.05	0.0415
	2,3,4,7,8-P5CDF	1.5	0.02	0.5	0.75
	1,2,3,4,7,8-H ₆ CDF	1.4	0.05	0.1	0.14
多氯代二	1,2,3,6,7,8-H ₆ CDF	1.2	0.04	0,1	0.12
举并呋喃	2,3,4,6,7,8-H ₆ CDF	1.2	0.03	0.1	0.12
	1,2,3,7,8,9-H ₆ CDF	0.21	0.05	0.1	0.021
	1,2,3,4,6,7,8-H ₇ CDF	4.2	0.03	0.01	0.042
	1,2,3,4,7,8,9-H ₇ CDF	1.2	0.03	0.01	0,012
	O ₈ CDF	14	0.09	0.001	0.014
	2,3,7,8-T ₄ CDD	0.10	0,03	1	0.1
	1,2,3,7,8-P ₅ CDD	0.64	0.04	0,5	0.32
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.56	0.04	0.1	0.056
*并对二。	1,2,3,6,7,8-H ₆ CDD	1.1	0.05	0.1	0.11
噁英	1,2,3,7,8,9-H ₆ CDD	1.6	0.03	0.1	0.16
	1,2,3,4,6,7,8-H ₇ CDD	19	0.04	0.01	0.19
	O ₈ CDD	1.3×10 ³	0.05	0.001	1.3
嗯英类总	量∑ (PCDDs+PCDFs)	200	- 20	-	3.6

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **19/28** 

# 检测报告

采样位置	- 10 M	垃	圾库旁 (平行)			
采样时间	2025-08-24 10:	37-10:39	样品编号	HEH432006A001-DUP		
	检测项目	实测浓度	检出限	毒性当量液	<b>皮度(TEQ)</b>	
	位例项目	ng/kg	ng/kg	I-TEF	ng TEQ/kg	
	2,3,7,8-T ₄ CDF	1.1	0.02	0.1	0.11	
	1,2,3,7,8-PsCDF	0.72	0.06	0.05	0.036	
	2,3,4,7,8-P ₅ CDF	1.3	0.02	0.5	0.65	
	1,2,3,4,7,8-H ₆ CDF	1.2	0.05	0.1	0.12	
多氯代二	1,2,3,6,7,8-H ₆ CDF	1.2	0.04	0.1	0.12	
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	1.2	0.03	0.1	0.12	
	1,2,3,7,8,9-H ₆ CDF	0.15	0.05	0.1	0.015	
	1,2,3,4,6,7,8-H ₇ CDF	4.6	0.03	0.01	0.046	
	1,2,3,4,7,8,9-H ₇ CDF	0.85	0.03	0.01	0.0085	
	O ₈ CDF	14	0.09	0.001	0.014	
	2,3,7,8-T ₄ CDD	0.09	0.03	1	0.09	
	1,2,3,7,8-P ₅ CDD	0.47	0.04	0.5	0.235	
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.51	0.04	0.1	0.051	
举并对二	1,2,3,6,7,8-H ₆ CDD	1.0	0.05	0.1	0.1	
噁英	1,2,3,7,8,9-H ₆ CDD	1.4	0.03	0.1	0.14	
	1,2,3,4,6,7,8-H ₇ CDD	20	0.04	0.01	0.2	
	O ₈ CDD	1.3×10 ³	0.05	0.001	1.3	
嗯英类总	.量∑ (PCDDs+PCDFs)	305	- Alle	-	3.4	

***本页完***

武汉市江夏区经济开发区藏龙岛梁山头村武汉拓创科技有限公司拓创科技产业园三期厂房 D 栋 1-2 楼 4007008005 www.wcipugroup.com



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **20/28** 

# 检测报告

采样位置	10 m	渗	速液处理站附近			
采样时间	2025-08-24 10:	51-10:53	样品编号	HEH432007A001		
	Wante D	实测浓度	检出限	毒性当量浓度(TEQ)		
	检测项目	ng/kg	ng/kg	I-TEF	ng TEQ/kg	
	2,3,7,8-T ₄ CDF	1.0	0.02	0.1	0.1	
	1,2,3,7,8-P ₅ CDF	1.2	0.06	0.05	0.06	
	2,3,4,7,8-P ₅ CDF	1.4	0.02	0.5	0.7	
	1,2,3,4,7,8-H ₆ CDF	1.5	0.05	0.1	0,15	
多氯代二	1,2,3,6,7,8-H ₆ CDF	1.4	0.04	0,1	0.14	
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	1.5	0.03	0.1	0.15	
	1,2,3,7,8,9-H ₆ CDF	0.05	0.05	0.1	0.005	
	1,2,3,4,6,7,8-H ₇ CDF	5.9	0.03	0.01	0.059	
	1,2,3,4,7,8,9-H ₇ CDF	0.59	0.03	0.01	0.0059	
	O ₈ CDF	4.3	0.09	0.001	0,0043	
	2,3,7,8-T ₄ CDD	0.07	0,03	1	0.07	
	1,2,3,7,8-P ₅ CDD	0.43	0.04	0.5	0.215	
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.26	0.04	0.1	0.026	
苯并对二。	1,2,3,6,7,8-H ₆ CDD	0.45	0.05	0.1	0.045	
噁英	1,2,3,7,8,9-H ₆ CDD	0.57	0.03	0,1	0.057	
	1,2,3,4,6,7,8-H ₇ CDD	5.0	0.04	0.01	0.05	
	O ₈ CDD	70	0.05	0.001	0.07	
嗯英类总	.量∑ (PCDDs+PCDFs)	32	- Die	<del></del>	1.9	

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 21/28

# 检测报告

### 续上表

采样位置	~ (III)		张家岭农用地			
采样时间	2025-08-24 11:	2025-08-24 11:34-11:36		HEH432008A001		
	检测项目	实测浓度	检出限	毒性当量液	皮度(TEQ)	
	位例项目	ng/kg	ng/kg	I-TEF	ng TEQ/kg	
	2,3,7,8-T ₄ CDF	2.2	0.02	0.1	0.22	
	1,2,3,7,8-P ₅ CDF	2.9	0.06	0.05	0.145	
	2,3,4,7,8-P ₅ CDF	4.0	0.02	0.5	2.0	
	1,2,3,4,7,8-H ₆ CDF	3.6	0.05	0.1	0.36	
8氯代二	1,2,3,6,7,8-H ₆ CDF	3.7	0.04	0,1	0.37	
於并呋喃	2,3,4,6,7,8-H ₆ CDF	3.8	0.03	0.1	0.38	
	1,2,3,7,8,9-H ₆ CDF	0.31	0.05	0,1	0.031	
	1,2,3,4,6,7,8-H ₇ CDF	12	0.03	0.01	0.12	
	1,2,3,4,7,8,9-H ₇ CDF	1.2	0.03	0.01	0,012	
	O ₈ CDF	11	0.09	0,001	0.011	
	2,3,7,8-T ₄ CDD	0.21	0.03	1	0.21	
	1,2,3,7,8-P ₅ CDD	1.2	0.04	0.5	0.6	
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.71	0.04	0.1	0.071	
k并对二。	1,2,3,6,7,8-H ₆ CDD	1.2	0.05	0.1	0.12	
噁英	1,2,3,7,8,9-H ₆ CDD	1.0	0.03	0,1	0.1	
	1,2,3,4,6,7,8-H ₇ CDD	8.6	0.04	0.01	0.086	
	O ₈ CDD	2.7×10 ²	0.05	0.001	0.27	
嗯英类总	.量∑ (PCDDs+PCDFs)	35	- Bus		5.1	

***本页完***



Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **22/28** 

# 检测报告

### 续上表

采样位置	C. (1) 19		双凤魏农用地			
采样时间	2025-08-24 12:	30-12:32	样品编号	HEH432009A001		
	<b>松湖港口</b>	实测浓度	检出限	毒性当量浓	度(TEQ)	
	检测项目	ng/kg	ng/kg	I-TEF	ng TEQ/kg	
	2,3,7,8-T ₄ CDF	0.95	0.02	0.1	0.095	
	1,2,3,7,8-PsCDF	1.3	0.06	0.05	0.065	
	2,3,4,7,8-P ₅ CDF	1.5	0.02	0.5	0.75	
	1,2,3,4,7,8-H ₆ CDF	1.5	0.05	0.1	0.15	
多氯代二	1,2,3,6,7,8-H ₆ CDF	1.5	0.04	0,1	0.15	
举并呋喃	2,3,4,6,7,8-H ₆ CDF	1.5	0.03	0.1	0.15	
	1,2,3,7,8,9-H ₆ CDF	0.11	0.05	0.1	0.011	
	1,2,3,4,6,7,8-H ₇ CDF	5,8	0.03	0.01	0.058	
	1,2,3,4,7,8,9-H ₇ CDF	0.70	0.03	0.01	0,007	
	O ₈ CDF	4.4	0.09	0,001	0,0044	
	2,3,7,8-T ₄ CDD	0.05	0,03	1	0.05	
	1,2,3,7,8-P ₅ CDD	0.49	0.04	0.5	0.245	
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.27	0.04	0.1	0.027	
<b>举并对二</b>	1,2,3,6,7,8-H ₆ CDD	0.47	0.05	0.1	0.047	
噁英	1,2,3,7,8,9-H ₆ CDD	0.43	0.03	0.1	0.043	
	1,2,3,4,6,7,8-H ₇ CDD	4.7	0.04	0.01	0.047	
	O ₈ CDD	71	0.05	0.001	0.071	
- 嗯英类总	.量∑ (PCDDs+PCDFs)	200	- Alle	<u> </u>	2.0	

- 注: 1、实测浓度: 二噁英类浓度测定值;
- 2、毒性当量浓度(TEQ):实测浓度与该同类物的毒性当量因子(TEF)的乘积;二噁英毒性当量浓度为所有检测同类物毒性当量浓度之和;毒性当量因子(TEF)采用 I-TEF;
  - 3、毒性当量 (TEQ) 质量分数: 折算为相当于 2,3,7,8-T₄CDD 的质量分数, ng/kg;
- 4、当样品的实测浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)浓度以 1/2 检出限 +。

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **23/28** 

# 检测报告

附表 3 检测结果

采样位置	C 12 12	长岁	灰固化车间固化物			
采样时间	2025-08-24 10:42		样品编号	HEH432010A001		
	检测项目	实测浓度	检出限	毒性当量浓度(TEQ)		
	位例项目	ng/kg	ng/kg	I-TEF	ng TEQ/kg	
	2,3,7,8-T ₄ CDF	3.0	0.07	0.1	0.3	
	1,2,3,7,8-P ₅ CDF	3.5	0.2	0.05	0.175	
	2,3,4,7,8-P ₅ CDF	4.2	0.07	0.5	2,1	
	1,2,3,4,7,8-H ₆ CDF	3.1	0.2	0.1	0.31	
多氯代二	1,2,3,6,7,8-H ₆ CDF	3.2	0.1	0,1	0.32	
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	3.3	0.1	0.1	0.33	
	1,2,3,7,8,9-H ₆ CDF	N.D.	0.2	0,1	0.01	
	1,2,3,4,6,7,8-H ₇ CDF	7,6	0.1	0.01	0.076	
	1,2,3,4,7,8,9-H ₇ CDF	0.6	0.1	0.01	0,006	
	O ₈ CDF	1.9	0.3	0.001	0.0019	
	2,3,7,8-T ₄ CDD	N.D.	0.1	1	0.05	
	1,2,3,7,8-P ₅ CDD	N.D.	0.1	0.5	0.025	
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.5	0.1	0.1	0.05	
<b>华并对二</b>	1,2,3,6,7,8-H ₆ CDD	1.5	0.2	0.1	0.15	
嗯英	1,2,3,7,8,9-H ₆ CDD	1.0	0.1	0.1	0.1	
	1,2,3,4,6,7,8-H ₇ CDD	13	0.1	0.01	0.13	
	O ₈ CDD	23	0.2	0.001	0.023	
嗯英类总	.量∑ (PCDDs+PCDFs)	357	- Die		4.2	

***本页完***





Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **24/28** 

# 检测报告

### 续上表

采样位置	C. [1] [1]	飞灰固化	在间固化物 (平利	r [*] )		
采样时间	2025-08-24	10:42	样品编号	HEH432010A001-DUP		
	检测项目	实测浓度	检出限	毒性当量浓	度(TEQ)	
	位例项目	ng/kg	ng/kg	I-TEF	ng TEQ/kg	
	2,3,7,8-T ₄ CDF	3.3	0.07	0.1	0.33	
	1,2,3,7,8-PsCDF	3.7	0.2	0.05	0.185	
	2,3,4,7,8-P ₅ CDF	4.4	0.07	0.5	2.2	
	1,2,3,4,7,8-H ₆ CDF	3.2	0.2	0.1	0.32	
多氯代二	1,2,3,6,7,8-H ₆ CDF	3.4	0.1	0,1	0.34	
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	3.7	0.1	0.1	0.37	
	1,2,3,7,8,9-H ₆ CDF	N.D.	0.2	0.1	0.01	
	1,2,3,4,6,7,8-H ₇ CDF	9.4	0.1	0.01	0.094	
	1,2,3,4,7,8,9-H ₇ CDF	0.8	0.1	0.01	0,008	
	O ₈ CDF	2.3	0.3	0,001	0,0023	
	2,3,7,8-T ₄ CDD	N.D.	0.1	1	0.05	
	1,2,3,7,8-P ₅ CDD	N.D.	0.1	0.5	0,025	
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.8	0.1	0.1	0.08	
<b>苯并对二</b>	1,2,3,6,7,8-H ₆ CDD	1.4	0.2	0.1	0.14	
噁英	1,2,3,7,8,9-H ₆ CDD	1.0	0.1	0.1	0.1	
	1,2,3,4,6,7,8-H-CDD	18	0.1	0.01	0.18	
	O ₈ CDD	27	0.2	0.001	0.027	
二噁英类总	.量∑ (PCDDs+PCDFs)	232	- Bres		4.5	

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 25/28

# 检测报告

### 续上表

采样位置	0. III. III	· y	灰固化车间固化物				
采样时间	2025-08-25	11:04	:04 样品编号		HEH432010B001		
	Wallet D	实测浓度	检出限	毒性当量浓度(TEQ)			
	检测项目	ng/kg	ng/kg	I-TEF	ng TEQ/kg		
	2,3,7,8-T ₄ CDF	4.7	0.07	0.1	0.47		
	1,2,3,7,8-P ₅ CDF	6.0	0.2	0.05	0.3		
	2,3,4,7,8-P ₅ CDF	6.2	0.07	0.5	3.1		
	1,2,3,4,7,8-H ₆ CDF	5.1	0.2	0.1	0.51		
多氯代二	1,2,3,6,7,8-H ₆ CDF	5.2	0.1	0.1	0.52		
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	4.4	0.1	0.1	0.44		
	1,2,3,7,8,9-H ₆ CDF	0.5	0.2	0.1	0.05		
	1,2,3,4,6,7,8-H ₇ CDF	11	0.1	0.01	0.11		
	1,2,3,4,7,8,9-H ₇ CDF	1.5	0.1	0.01	0,015		
	O ₈ CDF	2.3	0.3	0.001	0.0023		
	2,3,7,8-T ₄ CDD	0.4	0.1	1	0.4		
	1,2,3,7,8-P ₅ CDD	1.7	0.1	0.5	0.85		
多氯代二	1,2,3,4,7,8-H ₆ CDD	0.6	0.1	0.1	0.06		
苯并对二。	1,2,3,6,7,8-H ₆ CDD	1.7	0.2	0.1	0.17		
噁英	1,2,3,7,8,9-H ₆ CDD	0.8	0.1	0.1	0.08		
	1,2,3,4,6,7,8-H ₇ CDD	14	0.1	0.01	0.14		
	O ₈ CDD	22	0.2	0.001	0,022		
二噁英类总	.量∑ (PCDDs+PCDFs)	200	- Die	<del>s</del> s	7.2		

- 注: 1、实测浓度: 二噁英类浓度测定值;
- 2、毒性当量浓度(TEQ):实测浓度与该同类物的毒性当量因子(TEF)的乘积;二噁英毒性当量浓度为所有检测同类物毒性当量浓度之和;毒性当量因子(TEF)采用 I-TEF;
  - 3、毒性当量 (TEQ) 质量分数: 折算为相当于 2,3,7,8-T₄CDD 的质量分数, ng/kg;
  - 4、当样品的实测浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)浓度以 1/2 检出限

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 26/28

# 检测报告

### 4. 气象参数

4. 气象参	奴						
检测点位	采样时间	温度(°C)	相对湿度 (%)	气压(kPa)	风速(m/s)	风向	天气状况
张家岭	2025-08-23 11:00 ~ 2025-08-24 09:00	26,1~36.7	49.3-64.9	100.1~100. 8	0.8~1,1	东南	B ₁₁
张家岭	2025-08-24 11:40 ~ 2025-08-25 09:40	26.7~36.8	44.7~65.7	100.1~100. 7	0.9-1.1	东南	晴 \$
张家岭	2025-08-25 11:55 ~ 2025-08-26 09:55	25.4~37.0	46.9~66.3	100.1~100. 7	0.8~1.3	东南	晴
双凤魏	2025-08-23 11:00 ~ 2025-08-24 09:00	26.1~36.7	49.3~64.9	100.1~100. 8	0.8~1.1	东南	B _H
双凤魏	2025-08-24 13:22 ~ 2025-08-25 11:22	26.7-36.8	44.7–65.7	100.1~100. 7	0.9-1.1	东南	晴
双风魏	2025-08-25 12:28 ~ 2025-08-26 10:28	25.4-37.0	46.9~66.3	100.1~100. 7	0.8~1.3	东南	暏
尖山曹	2025-08-23 11:20 ~ 2025-08-24 09:20	26,1~36.7	49.3~64.9	100,1~100, 8	0.8~1.1	东南	睛
尖山曹	2025-08-24 12:09 ~ 2025-08-25 10:09	26,7-36.8	44.7–65.7	100.1~100. 7	0.9~1.1	东南	嵴
尖山曹	2025-08-25 12:15 ~ 2025-08-26 10:15	25.4-37.0	46.9-66.3	100.1~100. 7	0.8~1.3	东南	睹



Q/WP-WHAEED-R-771 A/1 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: 27/28

## 检测报告

## 附件 2、质量控制样品检测结果

### 固体废物实验室平行双样分析结果记录表

样品 类型	样品编 号	D	检测	项目	检测值 A(ng/kg)	检测值 B(ng/kg)	相对偏 差 RD%	结果评 价
	din.			2,3,7,8-T ₄ CDF	3.0	3.3	4.8	合格
				1,2,3,7,8-P5CDF	3.5	3.7	2.8	合格
				2,3,4,7,8-P ₅ CDF	4.2	4.4	2.3	合格
				1,2,3,4,7,8-H ₆ CDF	3.1	3.2	1.6	合格
				1,2,3,6,7,8-H ₆ CDF	3.2	3.4	3.0	合格
	50.		多氯代二	2,3,4,6,7,8-H ₆ CDF	3.3	3.7	5.7	合格
			苯并呋喃	1,2,3,7,8,9-H ₆ CDF	ND	ND	1	合格
	S. III			1,2,3,4,6,7,8-H ₇ CD F	7.6	9.4	10.6	合格
固体 废物	010A001	二噁		1,2,3,4,7,8,9-H ₇ CD F	0.6	0.8	14.3	合格
	001			O ₈ CDF	1.9	2.3	9.5	合格
	b			2,3,7,8-T ₄ CDD	ND	ND	7	合格
				1,2,3,7,8-PsCDD	ND	ND	1	合格
			de for the	1,2,3,4,7,8-H ₆ CDD	0.5	0.8	23.1	合格
	D _{in}		多氯代二苯并对二	1,2,3,6,7,8-H ₆ CDD	1.5	1.4	3.4	合格
			噁英	1,2,3,7,8,9-H ₆ CDD	1.0	1.0	0.0	合格
				1,2,3,4,6,7,8-H ₇ CD D	13	18	16.1	合格
				O ₈ CDD	23	27	8.0	合格
备注		0.33	单沙	《平行的实验结果应为	平均值的±30	%以内		Ein

***本页完***



Q/WP-WHAEED-R-771 A/I 报告编号: WHA-j-34-25080056-02-JC-01C2 页码: **28/28** 

# 检测报告

## 土壤实验室平行双样分析结果记录表

样品 类型	样品编 号		检测	项目	检测值 A(ng/kg)	检测值 B(ng/kg)	相对偏 差 RD%	结果评 价
				2,3,7,8-T ₄ CDF	1.1	1.1	0.0	合格
				1,2,3,7,8-P5CDF	0.83	0.72	7.1	合格
	Sin			2,3,4,7,8-P ₅ CDF	1.5	1.3	7.1	合格
				1,2,3,4,7,8-H ₆ CDF	1.4	1.2	7,7	合格
				1,2,3,6,7,8-H ₆ CDF	1.2	1.2	0.0	合格
	20		多氯代二苯并呋喃	2,3,4,6,7,8-H ₆ CDF	1.2	1.2	0.0	合格
	2		本开大明	1,2,3,7,8,9-H ₆ CDF	0.21	0.15	16.7	合格
	040000000000000000000000000000000000000		100	1,2,3,4,6,7,8-H ₇ CD F	4.2	4.6	4.5	合格
土壤	006A001	二噁		1,2,3,4,7,8,9-H ₇ CD F	1.2	0.85	17.1	合格
	001			O ₈ CDF	14	14	0.0	合格
	5.7			2,3,7,8-T ₄ CDD	0.10	0.09	5.3	合格
				1,2,3,7,8-P ₅ CDD	0.64	0.47	15.3	合格
			44 10 -	1,2,3,4,7,8-H ₆ CDD	0.56	0,51	4.7	合格
			多 氯代二 苯并对二	1,2,3,6,7,8-H ₆ CDD	1.1	1.0	4.8	合格
	Sala.			1,2,3,7,8,9-H ₆ CDD	1.6	1.4	6.7	合格
				1,2,3,4,6,7,8-H ₇ CD D	19	20	2.6	合格
	57.8			O ₈ CDD	1.3×10 ³	1.3×10³	0.0	合格

***报告结束***

## 附件 21-4: 验收监测其他项目检测报告





# 武汉环景检测服务有限公司

# 检测报告

报告编号:	HJ202508153	
	武汉城市生活垃圾焚烧发电厂	-111
项目名称:	验收监测	
委托单位:	武汉市绿色环保能源有限公司	
监测类别:	委托检测	
报告日期:	2025年9月29日	



## 报告编制说明

- 1、报告无本公司报告专用章、骑缝章及 (基本) 章无效。
- 2、报告内容涂改、缺页、增删无效;报告无三级审核无效。
- 3、检测委托方如对本报告有异议,须于收到本报告之日起十日 内以书面形式向我公司提出,逾期不予受理。无法保存、复现的样 品不受理申诉。
  - 4、未经本公司书面批准,不得部分复制本报告。
  - 5、本报告及数据不得用于商品广告,违者必究。

## 本机构通讯资料:

单位全称: 武汉环景检测服务有限公司

地 址: 武汉市东西湖区宏图大道银潭路

天龙钢构工业园 1号综合楼 2楼

邮政编码: 430040

电 话: 027-83901064



报告编号: HJ202508153

第1页共41页

## 1、基本情况

受武汉市绿色环保能源有限公司委托,根据委托方提供的监测方案,我公司于2025年8月26日、2025年8月27日对武汉城市生活垃圾焚烧发电厂的废水、废气、噪声排放现状及地下水、土壤、固体废物质量现状进行了现场监测。依据实际监测分析结果,编制了此报告。

## 2、企业概况

表 2-1 企业基本情况

委托单位名称	武汉市绿色环保能源有限公司	
受检单位名称	武汉城市生活垃圾焚烧发电厂	
受检单位地址	湖北省武汉市江夏区郑店街雷竹村	
生产工况	监测期间内正常运行	

## 3、监测方案

依据检测方案的要求,按照《污水监测技术规范》HJ 91.1-2019、《固定源废气监测技术规范》HJ/T 397-2007、《大气污染物无组织排放监测技术导则》HJ/T 55-2000、《工业企业厂界环境噪声排放标准》GB 12348-2008、《地下水环境监测技术规范》HJ 164-2020、《土壤环境监测技术规范》HJ/T 166-2004等相关环境监测技术规范,对武汉城市生活垃圾焚烧发电厂的废水、废气、噪声排放现状及地下水、土壤、固体废物质量现状进行了监测。具体监测内容见表 3-1:

Tel: 027-83901064

E-mail: whhj testing@163.com



报告编号: HJ202508153

第 2 页 共 41 页

表 3-1 采样信息一览表

监测 类型	监测点位	点位 编号	检测指标	监测 频次	采样设备型号及 编号	样品保 存方式
	渗滤液处理站车间 排口	<b>★</b> 1	总汞、总镉、总铬、铬(六价)、 总砷、总铅、pH、化学需氧量、 五日生化需氧量、悬浮物、氨 氨、总氮、总磷、动植物油			
废水	厂区总排口	<b>★</b> 2	pH、化学需氧量、五日生化需氧量、悬浮物、氦氮、总磷、总氮、类大肠菌群、总汞、总镉、总铬、铬(六价)、总砷、总铅、动植物油	3 次×2 天		
地下水	厂区地下水上游	<b>☆1</b>			采样器	加保护剂避光冷藏
	厂区地下水下游	☆2	pH、总硬度、溶解性总固体、 耗氧量、石油类、硫酸盐、氯		MD1080 型 烟尘烟气测试仪 WHHJ/YS-04-100 FYF-11 手持气象站 WHHJ/YS-04-096 GT8907风速风量风	
	厂区地下水侧向	☆3	化物、铁、锰、钠、挥发性酚 类(以苯酚计)、耗氧量、亚硝 酸盐、硝酸盐、氨氮、氟化物、			
	垃圾库边界	☆4	氰化物、汞、砷、镉、铬(六价)、铅、总大肠菌群、细菌总数			
	渗滤液处理站下游	☆5				
有组成气	5#生活垃圾焚烧炉	©1	颗粒物、二氧化硫、氮氧化物、 氯化氢、一氧化碳、汞及其化 合物、镉+铊、锑+砷+铅+铬+ 钴+铜+锰+镍			
	6#生活垃圾焚烧炉	©2	FH - Hu - 3000 - 1044		MD1080 型 烟尘烟气测试仪 WHHJ/YS-04-099 FYF-11 手持气象站 WHHJ/YS-04-096	

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 3 页 共 41 页

监测 类型	监测点位	点位 编号	检测指标	监测 频次	采样设备型号及 编号	样品保 存方式
	厂区上风向	•1			MH1205 恒温恒流 大气/颗粒物采样器	
无组 织废	厂区下风向 1	•2	颗粒物、氨气、硫化氢、臭气	3 次×2 天	WHHJ/YS-04-083 WHHJ/YS-04-084 WHHJ/YS-04-085	
织废气	厂区下风向 2	•3	浓度	3 X×2 X	WHHJ/YS-04-086 真空箱 WHHJ/YS-04-101	
	厂区下风向 3	<b>•</b> 4			FYF-11 手持气象站 WHHJ/YS-04-097	
固体废物	飞灰固化车间固 化物		含水率、浸出液的汞、铜、铅、锌、镉、铵、钡、镍、砷、总铬、铬(六价)、硒、pH	1 次×2 天		
	焚烧炉炉渣	□2	热灼减率			
	垃圾库旁	<b>1</b>			采样器	低温避光
1. 400	渗滤液处理站附近	<b>2</b>	pH、汞、铬(六价)、铜、铅、	1次×1天		
土壤	张家岭农用地	<b>3</b>	砷、镉、镍、锰、钴、铊、锑			
	双凤魏农用地	<b>4</b>				
	厂界东侧外 1m 处 1	<b>▲</b> 1			AWA5688 型多功能	
	厂界东侧外 1m 处 2	▲2				
	厂界南侧外 1m 处 1	▲3				
68 ±	厂界南侧外 1m 处 2	<b>A</b> 4	*******	昼、夜间各	声级计 WHHJ/YS-04-034	
噪声	厂界西侧外 1m 处 1	▲5	等效连续 A 声级	监测 1 次 ×2 天	AWA6221B 型声级 校准器	/
	厂界西侧外 1m 处 2	<b>A</b> 6			WHHJ/YS-04-014	
	厂界北侧外 lm 处 l	▲7				
	厂界北侧外 1m 处 2	▲8				

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 4 页 共 41 页

## 4、检测仪器、分析方法及方法来源

检测仪器、分析方法及方法来源见表 4-1:

表 4-1 分析仪器、分析方法及方法来源一览表

	14 min = =	检测仪器	Viera	+×+==	HA LU PR
	检测项目	型号、名称、编号	分析方法	方法来源	检出限
	pН	SX620 便携式 pH 计 WHHJ/YS-04-067	电极法	HJ 1147-2020	/
	悬浮物	AR224CN 电子天平 WHHJ/YS-01-005	重量法	GB 11901-89	4 mg/L
	化学需氧量	KN-COD11 恒温消解仪 WHHJ/YS-02-053	重铬酸盐法	НЈ 828-2017	4 mg/L
	五日生化需氧量	生化培养箱 SPX-250B-Z WHHJ/YS-02-020	稀释与接种法	НЈ 505-2009	0.5 mg/L
	总氨	UV-1800SPC 紫外可见分光 光度计 WHHJ/YS-01-012	碱性过硫酸钾消解紫 外分光光度法	НЈ 636-2012	0.05 mg/L
	<b>夏慶</b>	V-1100 可见分光光度计(光 谱仪) WHHJ/YS-01-027	纳氏试剂分光光度法	НЈ 535-2009	0.025 mg/L
	总磷	V-1100 可见分光光度计(光 谱仪) WHHJ/YS-01-027	钼酸铵分光光度法	GB 11893-89	0.01 mg/L
<del></del>	动植物油	MAI-100G 红外测油仪 WHHJ/YS-01-025	红外分光光度法	НЈ 637-2018	0.06 mg/L
废水	总汞	AFS-922 原子荧光光度计 (11800124020762)	原子荧光法	НЈ 694-2014	4×10 ⁻⁵ mg/l
	总镉	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 700-2014	5×10 ⁻⁵ mg/l
	总铬	V-1100 可见分光光度计(光 谱仪)WHHJ/YS-01-027	高锰酸钾氧化-二苯 碳酰二肼分光光度法	GB 7466-87	0.004 mg/L
	铬(六价)	V-1100 可见分光光度计(光 谱仪) WHHJ/YS-01-027	二苯碳酰二肼分光光 度法	GB 7467-87	0.004 mg/L
	总砷	AFS-8530 原子荧光光度计 (11800220110041)	原子荧光法	НЈ 694-2014	3×10 ⁻⁴ mg/
	总铅	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 700-2014	9×10 ⁻⁵ mg/

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 5 页 共 41 页

	A MITE ET	检测仪器	/\45-4-4	-L-14-4-7F		
35	检测项目	型号、名称、编号	分析方法	方法来源	检出限	
	粪大肠菌群	HPX-9272MBE 电热恒温培养箱 WHHJ/YS-02-021	酶底物法	НЈ 1001-2018	10 MPN/L	
	рН	SX620 便携式 pH 计 WHHJ/YS-04-067	电极法	НЈ 1147-2020	1	
	震震	V-1100 可见分光光度计(光 谱仪) WHHJ/YS-01-027	纳氏试剂分光光度法	НЈ 535-2009	0.025 mg/L	
	硝酸盐	UV-1800SPC 紫外可见分光 光度计 WHHJ/YS-01-012	紫外分光光度法	HJ/T 346-2007	0.08 mg/L	
	亚硝酸盐	V-1100 可见分光光度计(光 谱仪) WHHJ/YS-01-027	分光光度法	GB 7493-87	0.003 mg/L	
	挥发性酚类 (以苯酚计)	UV-1800SPC 紫外可见分光 光度计 WHHJ/YS-01-012	4-氨基安替比林分光 光度法	НЈ 503-2009	0.0003 mg/l	
	氰化物	UV-1800SPC 紫外可见分光 光度计 WHHJ/YS-01-012	异烟酸-吡唑啉酮分 光光度法	НЈ 484-2009	0.004 mg/L	
	砷	AFS-8530 原子荧光光度计 (11800220110052)	原子荧光法	НЈ 694-2014	3×10 ⁻⁴ mg/l	
地下水	汞	AFS-922 原子荧光光度计 (11800124020762)	原子荧光法	НЈ 694-2014	4×10 ⁻⁵ mg/l	
	铬(六价)	V-1100 可见分光光度计(光 谱仪)WHHJ/YS-01-027	二苯碳酰二肼 分光光度法	GB 7467-87	0.004 mg/L	
1	总硬度	滴定管	EDTA 滴定法	GB 7477-87	0.05 mmol/	
	铅	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 700-2014	9×10-5 mg/I	
	镉	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	HJ 700-2014	5×10 ⁻⁵ mg/L	
	铁	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子发射 光谱法	НЈ 776-2015	0.02 mg/L	
	锰	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子发射 光谱法	НЈ 776-2015	0.004 mg/L	

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第6页共41页

3		检测仪器	分析方法	方法来源	检出限
1	检测项目 型号、名称、编号		开机力法	力法未赊	THE CES PIR
	钠	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子发射 光谱法	НЈ 776-2015	0.12 mg/L
	溶解性总固体	AR224CN 电子天平 WHHJ/YS-01-004	称量法	GB/T 5750.4-2023	1
	耗氧量	HH-6A 智能数显恒温水浴锅 WHHJ/YS-02-061	酸性法	GB 11892-89	0.5 mg/L
	石油类	UV-1800SPC 紫外可见分光 光度计 WHHJ/YS-01-012	紫外分光光度法	НЈ 970-2018	0.01 mg/L
	氟化物	YC-7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	НЈ 84-2016	0.006 mg/L
	硫酸盐	YC-7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	НЈ 84-2016	0.018 mg/L
	氯化物	YC-7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	НЈ 84-2016	0.007 mg/I
	总大肠菌群	SPX-100B-Z 生化培养箱 WHHJ/YS-02-058	酶底物法	НЈ 1001-2018	10 MPN/L
	细菌总数	SPX-100B-Z 生化培养箱 WHHJ/YS-02-058	平皿计数法	НЈ 1000-2018	I CFU/mL
	颗粒物	EX125ZH 电子天平 WHHJ/YS-01-024	重量法	НЈ 836-2017	1.0 mg/m ³
	二氧化硫	MD1080 型烟尘烟气测试仪 WHHJ/YS-04-100	定电位电解法	НЈ 57-2017	3 mg/m ³
	二氧化硫	MD1080 型烟尘烟气测试仪 WHHJ/YS-04-099	定电位电解法	НЈ 57-2017	3 mg/m ³
有组	氮氧化物	MD1080 型烟尘烟气测试仪 WHHJ/YS-04-100	定电位电解法	НЈ 693-2014	3 mg/m ³
织废 气	氮氧化物	MD1080 型烟尘烟气测试仪 WHHJ/YS-04-099	定电位电解法	НЈ 693-2014	3 mg/m ³
	氯化氢	YC-7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	НЈ 549-2016	0.2 mg/m ³
	一氧化碳	MD1080 型 烟尘烟气测试 仪 WHHJ/YS-04-099	定电位电解法	НЈ 973-2018	3 mg/m ³
	一氧化碳	MD1080 型 烟尘烟气测试 仪 WHHJ/YS-04-100	定电位电解法	НЈ 973-2018	3 mg/m ³

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 7 页 共 41 页

	A Solve Co	检测仪器	N45+34			
15	金测项目	型号、名称、编号	分析方法	方法来源	检出限	
	汞及其化合物	AFS-922 原子荧光光度计 (11800124020762)	原子荧光光度法	《空气和废气监测 分析方法》 (第四版增补版)	1	
	镉	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 657-2013	8×10 ⁻⁶ mg/m ²	
	铊	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 657-2013	8×10 ⁻⁶ mg/m ²	
	锑	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 657-2013	2×10 ⁻⁵ mg/m ²	
	砷	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 657-2013	2×10 ⁻⁴ mg/m ³	
	铅	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)		НЈ 657-2013	2×10 ⁻⁴ mg/m ²	
	铬	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 657-2013	3×10 ⁻⁴ mg/m ³	
	钴	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 657-2013	8×10 ⁻⁶ mg/m ²	
	铜	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 657-2013	2×10 ⁻⁴ mg/m ³	
	锰	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 657-2013	7×10 ⁻⁵ mg/m ³	
	镍	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 657-2013	1×10 ⁻⁴ mg/m ³	
A	颗粒物	EX125ZH 电子天平 WHHJ/YS-01-024	重量法	НЈ 1263-2022	0.007 mg/m ³	
-	氨气	UV-1800SPC 紫外可见分光 光度计 WHHJ/YS-01-012	纳氏试剂分光光度法	НЈ 533-2009	0.01 mg/m ³	

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 8 页 共 41 页

		检测仪器	/\4C±>+	+ >+ + + 15	检出限
松	检测项目 型号、名称、编号		分析方法	方法来源	極出陳
	硫化氢	V-1100 可见分光光度计(光 谱仪) WHHJ/YS-01-027	亚甲基蓝分光光度法	《空气和废气监测 分析方法》 (第四版增补版)	0.001 mg/m ³
	臭气浓度	1	三点比较式臭袋法	HJ 1262-2022	1
	pН	PHSJ-4F pH i† (11800924010742)	电位法	НЈ 962-2018	/
	汞	DMA-80 测汞仪 (11800520110047)	分光光度法	НЈ 923-2017	0.0002 mg/kg
	铬(六价)	PinAAcle 900F 原子吸收光 谱仪(11800122080583)	火焰原子分光光度法	НЈ 1082-2019	0.5 mg/kg
	铜	PinAAcle 900F 原子吸收光 谱仪(11800122080583)	火焰原子分光光度法	HJ491-2019	1 mg/kg
	铅	PinAAcle 900F 原子吸收光 谱仪(11800122080583)	火焰原子分光光度法	HJ491-2019	10 mg/kg
	镍	PinAAcle 900F 原子吸收光 谱仪(11800122080583)	火焰原子分光光度法	НЈ491-2019	3 mg/kg
	镉	AA900T原子吸收光谱仪 (11800120110053)	石墨炉原子吸收分光 光度法	GB/T 17141-1997	0.01 mg/kg
土壤	砷	AFS-8530 原子荧光光度计 (11800220110052)	原子荧光法	НЈ 680-2013	0.01 mg/kg
	锰	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 803-2016	0.4 mg/kg
	钴	ICP-MS 电感耦合等离子体 质谱仪 1000G (11800220110041)	电感耦合等离子体质 谱法	НЈ 803-2016	0.04 mg/kg
	铊	AA900T原子吸收光谱仪 (11800120110053)	石墨炉原子吸收分光 光度法	НЈ 1082-2019	0.1 mg/kg
	锑	AFS-8530 原子荧光光度计 (11800220110052)	原子荧光法	НЈ 680-2013	0.01 mg/kg
固体	含水率	HC311 电子天平 (11800922080565)	醋酸缓冲溶液法	НЈ/Т 300-2007	1
废物	热灼减率	HC311 电子天平 (11800922080565)	重量法	НЈ 1024-2019	0.2 %

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 9 页 共 41 页

4A SHITE EI	检测仪器	NAC-1-SE	444	AA stamm
检测项目	型号、名称、编号	分析方法	方法来源	检出限
汞	AFS-922 原子荧光光度计 (11800124020762)	原子荧光法	НЈ 702-2014	0.00002 mg/L
硒	AFS-922 原子荧光光度计 (11800124020762)	原子荧光法	НЈ 702-2014	0.00010 mg/I
铜	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子体发 射光谱法	НЈ 781-2016	0.01 mg/L
铅	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子体发 射光谱法	НЈ 781-2016	0.03 mg/L
锌	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子体发 射光谱法	НЈ 781-2016	0.01 mg/L
镉	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子体发 射光谱法	НЈ 781-2016	0.01 mg/L
铍	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子体发 射光谱法	НЈ 781-2016	0.004 mg/L
钡	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子体发 射光谱法	НЈ 781-2016	0.06 mg/L
镍	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子体发 射光谱法	НЈ 781-2016	0.02 mg/L
总铬	ICP 电感耦合等离子发射光 谱仪 Avio 200 (11800220110042)	电感耦合等离子体发 射光谱法	НЈ 781-2016	0.02 mg/L
砷	AFS-8530 原子荧光光度计 (11800220110052)	原子荧光法	НЈ 702-2014	0.00010 mg/L
铬(六价)	V-5100B 紫外可见分光光度 计(11800924060855)	二苯碳酰二肼分光光 度法	GB/T 15555.4-1995	0.004 mg/L
pH	PHSJ-4F pH 1+ (11800924010742)	玻璃电极法	GB/T 15555.12-1995	1

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 10 页 共 41 页

W. WITE CI	检测仪器	分析方法	方法来源	检出限
检测项目	型号、名称、编号	万柳万法	万厷米原	THE CLI PIX
.0 ±	AWA5688 型多功能声级计 WHHJ/YS-04-034	工业企业厂界环境	GB 12348-2008	,
噪声	AWA6221B 型声级校准器 WHHJ/YS-04-014	噪声排放标准	是声排放标准 GB 12348-2008	1

## 5、质量控制及质量保证

- (1) 检测人员经过本公司专业上岗培训并为合格专业检测人员。
- (2) 所使用仪器、设备均经计量检定,且在有效期内使用。
- (3) 数据和检测报告实行三级审核制度,检测过程按照本公司 质量管理规定进行全程序质量控制。
- (4) 运行工况满足检测技术规范要求,严格按照国家标准与技术规范实施检测。
- (5) 检测实行空白检测、重复检测、加标回收、控制样品分析 等质控措施,确保检测数据的准确性。

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 11 页 共 41 页

### 6、检测结果

### 6.1 废水

废水监测结果见表 6-1:

表 6-1 废水监测结果一览表[单位: mg/L; pH 无量纲; 粪大肠菌群: MPN/L]

监测点位	监测日期	检测项目		监测	<b>划结果</b>	
血网从12	血州口州	位於吳日	第一次	第二次	第三次	均值
		рН	7.3	7.2	7.1	1
		悬浮物	4	5	4	4
		化学需氧量	55	61	65	60
		五日生化需氧量	12.8	14.6	15.7	14.4
		总氮	12.1	7.75	11.0	10.3
		氨氨	0.077	0.093	0.071	0.080
	2025年	总磷	0.07	0.06	0.06	0.06
	8月26日	动植物油	ND (0.06)	0.06	0.11	0.07
		总汞	ND (0.00004)	ND (0.00004)	ND (0.00004)	0.00002
★1 渗滤		总镉	0.00034	0.00007	0.00035	0.00025
液处理站		总铬	ND (0.004)	ND (0.004)	ND (0.004)	0.002
车间排口		铬(六价)	ND (0.004)	ND (0.004)	ND (0.004)	0.002
		总砷	0.0088	0.0091	0.0085	0.0088
		总铅	0.00193	0.00015	0.00628	0.00279
		pH	7.4	7.2	7.4	1
		悬浮物	ND (4)	ND (4)	ND (4)	2
		化学需氧量	61	70	63	65
	2025年 8月27日	五日生化需氧量	14.1	16.4	14.6	15.0
		总氮	10.7	10.8	9.75	10.42
		氨氮	0.057	0.052	0.060	0.056
		总磷	0.05	0.06	0.06	0.06

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 12 页 共 41 页

116-1001 <b>I</b> 64-	III-year ET ME	A WITE D		监测	结果	
监测点位	监测日期	检测项目	第一次	第二次	第三次	均值
		动植物油	0.06	0.07	0.09	0.07
		总汞	ND (0.00004)	ND (0.00004)	ND (0.00004)	0.00002
		总镉	0.00008	0.00032	0.00025	0.00022
		总铬	ND (0.004)	ND (0.004)	ND (0.004)	0.002
		铬(六价)	ND (0.004)	ND (0.004)	ND (0.004)	0.002
		总砷	0.0091	0.0085	0.0086	0.0087
		总铅	0.00099	0.0132	0.00061	0.00493
		pH	7.0	7.2	7.3	1
		悬浮物	ND (4)	ND (4)	ND (4)	2
		化学需氧量	53	67	53	58
		五日生化需氧量	12.1	16.1	12.3	13.5
		总氨	11.3	9.73	10.6	10.5
		氨氮	0.038	0.055	0.034	0.042
		总磷	0.07	0.07	0.06	0.07
	2025年8月26日	动植物油	0.08	0.08	0.11	0.09
★2厂区	8 /3 20 д	总汞	ND (0.00004)	ND (0.00004)	ND (0.00004)	0.00002
总排口		总镉	0.00209	0.00014	0.00010	0.00078
		总铬	ND (0.004)	ND (0.004)	ND (0.004)	0.002
		铬(六价)	ND (0.004)	ND (0.004)	ND (0.004)	0.002
		总砷	0.0077	0.0044	0.0090	0.0070
		总铅	0.0468	0.00246	0.00035	0.01657
		粪大肠菌群	6.7×10 ²	6.3×10 ²	6.4×10 ²	6.5×10
		pH	7.1	7.1	7.3	1
	2025年8月27日	悬浮物	ND (4)	ND (4)	ND (4)	2
	3/12/11	化学需氧量	59	74	64	66

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 13 页 共 41 页

(Vetal de As	(Veign) (T) tha	*A测压口		监测结果						
监测点位	监测日期	检测项目	第一次	第二次	第三次	均值				
		五日生化需氧量	13.1	17.6	14.4	15.0				
		总氮	10.6	10.5	10.4	10.5				
		震震	0.052	0.041	0.048	0.047				
		总磷	0.06	0.06	0.06	0.06				
		动植物油	0.09	0.16	0.15	0.13				
		总汞	ND (0.00004)	0.00004	ND (0.00004)	0.00002				
		总镉	0.00021	0.00030	0.00030	0.00027				
		总铬	ND (0.004)	ND (0.004)	ND (0.004)	0.002				
		铬(六价)	ND (0.004)	ND (0.004)	ND (0.004)	0.002				
		总砷	0.0085	0.0092	0.0084	0.0087				
		总铅	0.00215	0.00060	0.00065	0.00113				
		粪大肠菌群	6.6×10 ²	6.4×10 ²	6.6×10 ²	6.5×10 ³				

注: 1."ND"表明未检出或低于方法检出限

2.测定结果低于分析方法的最低检出浓度时,按 1/2 最低检出浓度值参加统计处理

#### 6.2 地下水

地下水检测结果见表 6-2:

表 6-2 地下水检测结果

[单位: mg/L; pH 无量纲; 总大肠菌群: MPN/L; 细菌总数: CFU/mL]

Mark Control of the Control	检测项目		检测结果								
监测点位		☆1 厂区地下水 上游	☆2 厂区地下水 下游	☆3 厂区地下水 側向	☆4 垃圾库边界	☆5 渗滤液处理 站下游					
	pН	7.4	7.9	7.8	7.5	7.4					
2025年	度度	0.131	0.386	0.071	0.167	0.093					
8月26日	硝酸盐	0.97	1.19	1.05	1.45	1.60					
	亚硝酸盐	0.021	0.244	ND (0.003)	0.027	ND (0.003)					

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 14 页 共 41 页

				检测结果		
监测点位	检测项目	☆1 厂区地下水 上游	☆2 厂区地下水 下游	:☆3 厂区地下水 側向	☆4 垃圾库边界	☆5 渗滤液处理 站下游
	挥发性酚类(以 苯酚计)	ND (0.0003)	ND (0.0003)	ND (0.0003)	ND (0.0003)	ND (0.0003)
	氰化物	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)
	铬(六价)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)
	总硬度	222	279	205	182	284
	氟化物	0.311	0.365	0.346	0.285	0.466
	铁	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
	锰	ND (0.04)	0.039	0.043	0.021	0.042
	钠	16.6	46.2	7.75	16.8	28.0
	汞	ND (0.00004)	ND (0.00004)	ND (0.00004)	ND (0.00004)	ND (0.00004)
	砷	0.0032	0.0030	0.0028	0.0035	0.0029
	镉	ND (0.00005)	0.00026	0.00012	0.00008	0.00018
	铅	ND (0.00009)	0.00033	ND (0.00009)	ND (0.00009)	ND (0.00009)
	溶解性总固体	280	602	255	251	467
	耗氧量	0.9	1.2	0.8	0.7	0.9
	石油类	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
	硫酸盐	46.1	80.2	41.5	47.1	153
	氯化物	21.6	170	21.7	35.2	64.5
	总大肠菌群	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	细菌总数	95	80	52	16	68
	pН	7.5	8.0	7.7	7.5	7.3
	震震	0.150	0.238	0.088	0.372	0.345
2025年	硝酸盐	1.10	1.21	1.06	1.34	1.26
8月27日	亚硝酸盐	ND (0.003)	ND (0.003)	ND (0.003)	0.051	0.027
	挥发性酚类(以 苯酚计)	ND (0.0003)	ND (0.0003)	ND (0.0003)	ND (0.0003)	ND (0.0003)

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 15 页 共 41 页

				检测结果		
监测点位	检测项目	☆1 厂区地下水 上游	☆2 厂区地下水 下游	:☆3 厂区地下水 側向	☆4 垃圾库边界	☆5 渗滤液处理 站下游
	氰化物	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)
	铬(六价)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)
	总硬度	209	272	188	192	314
	氟化物	0.265	0.347	0.324	0.472	0.544
	铁	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
	锰	0.071	0.055	0.056	0.040	0.036
	钠	6.19	48.9	6.90	15.7	36.1
	汞	ND (0.00004)	ND (0.00004)	ND (0.00004)	ND (0.00004)	ND (0.00004)
	砷	0.0033	0.0033	0.0041	0.0041	0.0038
	镉	0.00005	0.00019	0.00011	0.00014	0.00013
	铅	ND (0.00009)	ND (0.00009)	ND (0.00009)	ND (0.00009)	ND (0.00009)
	溶解性总固体	270	573	252	260	493
	耗氧量	0.9	1.0	0.9	0.8	0.9
	石油类	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
	硫酸盐	53.2	84.8	40.6	46.8	152
	氯化物	23.9	169	21.1	34.5	63.8
	总大肠菌群	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	细菌总数	34	38	24	76	97

注: "ND"表明未检出或低于方法检出限

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 16 页 共 41 页

### 6.3 有组织废气

#### 有组织废气检测结果见表 6-3~表 6-4:

表 6-3 有组织废气检测结果表

2381268		管道名称		管道形状	烟道截	面 (m²)	排气筒高度(m
监测 日期	©1 5#5	生活垃圾焚	烧炉	圆形	4.	524	80
нмі	监测	项目	单位	第一次	第二次	第三次	均值
	烟气标	干流量	m³/h	101728	119116	117450	112765
	烟气	温度	rc	172.1	170.2	169.0	170.4
	湿	度	%	28.7	27.4	26.4	27.5
	流	速	m/s	14.5	16.6	16.1	15.7
	氧合	全量	%	6.0	5.5	6.6	6.0
		实测浓度	mg/m³	1.0	1.2	1.2	1.1
	颗粒物	计算浓度	mg/m³	0.7	0.8	0.8	0.8
		排放速率	kg/h	0.102	0.143	0.141	0.129
		实测浓度	mg/m³	ND (3)	ND (3)	ND (3)	1
2025 年	二氧化硫	计算浓度	mg/m³	1	1	1	/
月 26 日		排放速率	kg/h	1	1	1	1
		实测浓度	mg/m³	127	132	132	130
	氮氧化物	计算浓度	mg/m³	85	85	92	87
		排放速率	kg/h	12.9	15.7	15.5	14.7
		实测浓度	mg/m³	ND (3)	ND (3)	ND (3)	1
	一氧化碳	计算浓度	mg/m³	1	/	1	1
		排放速率	kg/h	1	1	1	1
		实测浓度	mg/m³	ND (0.2)	ND (0.2)	ND (0.2	) /
	氯化氢	计算浓度	mg/m³	1	1	1	1
		排放速率	kg/h	1	1	1	1

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 17 页 共 41 页

		管道名称		管道形状	烟道截	(m²)	排气筒高度(m)
监测 日期	©1 5#:	生活垃圾焚	烧炉	圆形	4.5	524	80
H 741	监测	项目	单位	第一次	第二次	第三次	均值
	烟气标	干流量	m³/h	108977	108579	114949	110835
	烟气	温度	°C	167.9	167.1	164.0	166.3
	温	度	%	32.3	33.9	27.9	31.4
	流	速	m/s	16.2	16.5	15.9	16.2
	氧	氧含量		5.8	6.3	8.1	6.8
		实测浓度	mg/m³	ND (3×10-6)	3.29×10 ⁻⁴	2.48×10	1
	汞及其化 合物	计算浓度	mg/m³	1	2.24×10-4	1.92×10	1
		排放速率	kg/h	1	3.57×10 ⁻⁵	2.85×10	s /
	烟气标	干流量	m³/h	113524	112062	109074	111553
	烟气	温度	°C	164.4	163.9	164.1	164.1
	湿	度	%	26.4	30.6	28.9	25.3
	流	速	m/s	15.4	16.1	15.3	15.6
	氧1	含量	%	5.9	6.7	6.5	6.4
		实测浓度	mg/m³	4.60×10 ⁻⁴	4.52×10 ⁻⁴	3.85×10	4.32×10
	镉	计算浓度	mg/m³	3.05×10 ⁻⁴	3.16×10 ⁻⁴	2.66×10	2.96×10
		排放速率	kg/h	5.22×10 ⁻⁵	5.07×10 ⁻⁵	4.20×10	4.83×10
		实测浓度	mg/m³	ND (8×10-6)	ND (8×10-6)	ND (8×10	6) /
	铊	计算浓度	mg/m³	1	1	1	1
		排放速率	kg/h	/	1	1	1
		实测浓度	mg/m³	4.60×10 ⁻⁴	4.52×10 ⁻⁴	3.85×10	4.32×10
	镉+铊	计算浓度	mg/m³	3.05×10 ⁻⁴	3.16×10 ⁻⁴	2.66×10	2.96×10
		排放速率	kg/h	5.22×10 ⁻⁵	5.07×10 ⁻⁵	4.20×10 ⁻⁵	5 4.83×10-5
		实测浓度	mg/m³	4.69×10 ⁻⁴	3.90×10 ⁻⁴	3.58×10	4.06×10
	锑	计算浓度	mg/m³	3.11×10 ⁻⁴	2.73×10 ⁻⁴	2.47×10	2.77×10-
		排放速率	kg/h	5.32×10-5	4.37×10 ⁻⁵	3.90×10-	4.53×10-5

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 18 页 共 41 页

	1	管道名称		管道形状	烟道截	面(m²)	排气	筒高度(m)
监测 日期	©1 5#3	◎1 5#生活垃圾焚烧炉		圆形	4	.524	80	
H141	监测	监测项目		第一次	第二次	第三次		均值
		实测浓度	mg/m³	2.57×10-4	2.13×10 ⁻⁴	ND (2×10	0-4)	1
	砷	计算浓度	mg/m³	1.70×10-4	1.49×10 ⁻⁴	1		1
		排放速率	kg/h	2.92×10 ⁻⁵	2.39×10 ⁻⁵	1		1
		实测浓度	mg/m³	7.45×10 ⁻³	7.07×10 ⁻³	6.08×10	)-3	6.87×10 ⁻³
	铅	计算浓度	mg/m³	4.93×10 ⁻³	4.94×10 ⁻³	4.19×10	y-3	4.69×10 ⁻³
		排放速率	kg/h	8.46×10 ⁻⁴	7.92×10 ⁻⁴	6.63×10	)-4	7.67×10-4
		实测浓度	mg/m³	1.63×10 ⁻³	1.27×10 ⁻³	1.08×10	)-3	1.33×10 ⁻³
	铬	计算浓度	mg/m³	1.08×10 ⁻³	8.88×10 ⁻⁴	7.45×10	)-4	9.04×10-4
		排放速率	kg/h	1.85×10 ⁻⁴	1.42×10 ⁻⁴	1.18×10	)-4	1.48×10
		实测浓度	mg/m³	7.18×10 ⁻⁵	6.79×10 ⁻⁵	5.56×10	)-5	6.51×10-5
	钴	计算浓度	mg/m³	4.75×10 ⁻⁵	4.75×10 ⁻⁵	3.83×10	)-5	4.45×10-
		排放速率	kg/h	8.15×10 ⁻⁶	7.61×10 ⁻⁶	6.06×10	)-6	7.27×10-
		实测浓度	mg/m³	2.72×10 ⁻³	2.40×10 ⁻³	2.31×10	)-3	2.48×10 ⁻³
	铜	计算浓度	mg/m³	1.80×10 ⁻³	1.68×10 ⁻³	1.59×10	)-3	1.69×10 ⁻³
		排放速率	kg/h	3.09×10 ⁻⁴	2.69×10 ⁻⁴	2.52×10	)-4	2.77×10
		实测浓度	mg/m³	4.28×10 ⁻³	3.87×10 ⁻³	3.39×10	)-3	3.85×10-
	锰	计算浓度	mg/m³	2.83×10 ⁻³	2.71×10 ⁻³	2.34×10	)-3	2.63×10-
		排放速率	kg/h	4.86×10 ⁻⁴	4.34×10-4	3.70×10	)-4	4.30×10
		实测浓度	mg/m³	4.26×10 ⁻⁴	3.50×10 ⁻⁴	2.70×10	)-4	3.49×10
	镍	计算浓度	mg/m³	2.82×10 ⁻⁴	2.45×10-4	1.86×10	)-4	2.38×10
		排放速率	kg/h	4.84×10 ⁻⁵	3.92×10 ⁻⁵	2.94×10	)-5	3.90×10
	锑+砷+铅+	实测浓度	mg/m³	0.0173	0.0156	0.0135		0.0155
	络+钴+铜+	计算浓度	mg/m³	0.0115	0.0109	0.0093		0.0106
	锰+镍	排放速率	kg/h	1.96×10 ⁻³	1.75×10 ⁻³	1.47×10	)-3	1.73×10-

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 19 页 共 41 页

	A	管道名称		管道形状	烟道截	面 (m²)	排气筒高度(m
监测 日期	©1 5#	主活垃圾焚	烧炉	圆形	4.	524	80
	监测	项目	单位	第一次	第二次	第三次	均值
	烟气标	干流量	m³/h	114210	115061	114543	114605
	烟气	烟气温度		177.4	178.4	177.0	177.6
	湿	湿度		29.5	30.9	30.2	30.2
	流	速	m/s	16.7	17.2	16.9	16.9
	含氧	量	%	5.9	5.9	6.5	6.1
		实测浓度	mg/m³	1.0	1.1	1.0	1.0
	颗粒物	计算浓度	mg/m³	0.7	0.7	0.7	0.7
		排放速率	kg/h	0.114	0.127	0.115	0.119
	二氧化硫	实测浓度	mg/m³	ND (3)	5	23	1
		计算浓度	mg/m³	1	3	16	1
		排放速率	kg/h	1	0.575	2.63	1
	氨氧化物	实测浓度	mg/m³	136	110	100	115
2025年月27日		计算浓度	mg/m³	90	73	69	77
		排放速率	kg/h	15.5	12.7	11.5	13.2
		实测浓度	mg/m³	ND (3)	ND (3)	ND (3)	1
	一氧化碳	计算浓度	mg/m³	1	1	1	1
		排放速率	kg/h	1	1	1	1
		实测浓度	mg/m³	ND (0.2)	ND (0.2)	ND (0.2	) /
	氯化氢	计算浓度	mg/m³	1	1	1	1
		排放速率	kg/h	1	1	1	1
	烟气标	干流量	m³/h	114175	106202	112168	110848
	烟气	温度	°C	176.6	177.0	175.1	176.2
	湿	度	%	30.5	32.5	30.3	31.1
	流	速	m/s	16.9	16.2	16.5	16.5
	含氧	<b>重</b>	%	6.4	8.7	9.8	8.3

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 20 页 共 41 页

		管道名称		管道形状	烟道截	(m²) 1	非气筒高度(m)
监测 日期	©1 5#:	生活垃圾焚	烧炉	圆形	4.5	524	80
H 741	监测	监测项目		第一次	第二次	第三次	均值
	ARTONIA PERMITSIA	实测浓度	mg/m³	2.12×10 ⁻⁴	2.07×10 ⁻⁴	1.69×10-4	1.96×10-4
	汞及其化 合物	计算浓度	mg/m³	1.45×10-4	1.68×10 ⁻⁴	1.51×10-4	1.55×10-4
	H 129	排放速率	kg/h	2.42×10-5	2.20×10 ⁻⁵	1.90×10 ⁻⁵	2.17×10 ⁻⁵
	烟气标	干流量	m³/h	110338	113114	115725	113059
	烟气	温度	ъ	176.5	176.3	175.1	176.0
	温	度	%	29.5	27.3	27.2	28.0
	流	速	m/s	16.1	16.0	16.3	16.1
	含氧	量量	%	7.8	7.0	5.7	6.8
		实测浓度	mg/m³	4.61×10 ⁻⁴	4.11×10 ⁻⁴	3.45×10 ⁻⁴	4.06×10-4
	镉	计算浓度	mg/m³	3.49×10 ⁻⁴	2.94×10 ⁻⁴	2.25×10 ⁻⁴	2.89×10-4
		排放速率	kg/h	5.09×10 ⁻⁵	4.65×10 ⁻⁵	3.99×10 ⁻⁵	4.58×10-5
		实测浓度	mg/m³	ND (8×10-6)	ND (8×10-6)	1.05×10-5	
	铊	计算浓度	mg/m³	1	1	6.86×10-6	1
		排放速率	kg/h	1	1	1.22×10-6	1
		实测浓度	mg/m ³	4.61×10 ⁻⁴	4.11×10 ⁻⁴	3.56×10-4	4.02×10-4
	镉+铊	计算浓度	mg/m³	3.49×10 ⁻⁴	2.94×10-4	2.33×10-4	2.92×10-4
		排放速率	kg/h	5.09×10 ⁻⁵	4.65×10 ⁻⁵	4.12×10-5	4.62×10-5
		实测浓度	mg/m³	4.82×10 ⁻⁴	4.74×10 ⁻⁴	3.35×10-4	4.30×10-4
	锑	计算浓度	mg/m³	3.65×10 ⁻⁴	3.39×10 ⁻⁴	2.19×10	3.08×10-4
		排放速率	kg/h	5.32×10 ⁻⁵	5.36×10 ⁻⁵	3.88×10-	4.85×10-5
		实测浓度	mg/m³	2.39×10 ⁻⁴	2.11×10 ⁻⁴	ND (2×10	4) /
	砷	计算浓度	mg/m³	1.81×10 ⁻⁴	1.51×10 ⁻⁴	1	/
		排放速率	kg/h	2.64×10 ⁻⁵	2.39×10 ⁻⁵	/	1

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 21 页 共 41 页

监测 日期 _	3	管道名称		管道形状	烟道截	面 (m²)	排气	高度 (m
	©1 5#	◎1 5#生活垃圾焚烧炉			圆形 4.		.524 80	
	监测	监测项目		第一次	第二次	第三次	<b>t</b>	均值
		实测浓度	mg/m³	7.75×10 ⁻³	7.19×10 ⁻³	5.58×1	0-3	6.84×10-
	铅	计算浓度	mg/m³	5.87×10 ⁻³	5.14×10 ⁻³	3.65×1	0-3	4.89×10 ⁻³
		排放速率	kg/h	8.55×10 ⁻⁴	8.13×10 ⁻⁴	6.46×1	0-4	7.71×10
		实测浓度	mg/m³	1.49×10 ⁻³	1.59×10 ⁻³	9.31×1	0-4	1.34×10
	铬	计算浓度	mg/m³	1.13×10 ⁻³	1.14×10 ⁻³	6.08×1	0-4	9.59×10
		排放速率	kg/h	1.64×10 ⁻⁴	1.80×10 ⁻⁴	1.08×1	0-4	1.51×10
		实测浓度	mg/m³	7.85×10 ⁻⁵	7.23×10 ⁻⁵	5.25×1	0-5	6.78×10-
	钴	计算浓度	mg/m³	5.95×10 ⁻⁵	5.16×10 ⁻⁵	3.43×1	0-5	4.85×10
		排放速率	kg/h	8.66×10 ⁻⁶	8.18×10 ⁻⁶	6.08×1	0-6	7.64×10-6
		实测浓度	mg/m³	3.26×10 ⁻³	2.96×10 ⁻³	2.22×1	0-3	2.81×10-3
	铜	计算浓度	mg/m³	2.47×10 ⁻³	2.11×10 ⁻³	1.45×1	0-3	2.01×10 ⁻³
		排放速率	kg/h	3.60×10 ⁻⁴	3.35×10 ⁻⁴	2.57×1	0-4	3.17×10-
		实测浓度	mg/m ³	4.53×10 ⁻³	4.13×10 ⁻³	3.16×1	0-3	3.94×10 ⁻³
	锰	计算浓度	mg/m³	3.43×10 ⁻³	2.95×10 ⁻³	2.07×1	0-3	2.82×10 ⁻³
		排放速率	kg/h	5.00×10 ⁻⁴	4.67×10 ⁻⁴	3.66×1	0-4	4.44×10
		实测浓度	mg/m³	4.11×10 ⁻⁴	4.64×10 ⁻⁴	2.34×1	0-4	3.70×10
	镍	计算浓度	mg/m³	3.11×10 ⁻⁴	3.31×10 ⁻⁴	1.53×1	0-4	2.65×10 ⁻⁴
		排放速率	kg/h	4.53×10 ⁻⁵	5.25×10 ⁻⁵	2.71×1	0-5	4.16×10-5
	锑+砷+铅+	实测浓度	mg/m³	0.0182	0.0171	0.0125	;	0.0159
	络+钴+铜+	计算浓度	mg/m³	0.0138	0.0122	0.0082	2	0.0114
	锰+镍	排放速率	kg/h	2.01×10 ⁻³	1.93×10 ⁻³	1.45×1	0-3	1.80×10 ⁻³

注: "ND"表示未检出或低于方法检出限

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 22 页 共 41 页

		***		有组织废气检管道形状	The second second	5 (m²)	排气筒高度(m)
监测		管道名称					
日期	©2 6#3	主活垃圾焚	烧炉	圆形		524	80
	监测	监测项目		第一次	第二次	第三次	均值
	烟气标	干流量	m³/h	112558	121796	124120	119491
	烟气	温度	°C	175.2	171.1	172.3	172.9
	湿	度	%	18.6	20.6	19.9	19.7
	流	速	m/s	14.1	15.5	15.7	15.1
	氧合	量2	%	6.0	7.6	8.0	7.2
	颗粒物	实测浓度	mg/m³	1.7	1.5	1.3	1.5
		计算浓度	mg/m³	1.1	1.1	1.0	1.1
		排放速率	kg/h	0.191	0.183	0.161	0.178
		实测浓度	mg/m³	23	6	9	13
2025 年	二氧化硫	计算浓度	mg/m ³	15	4	7	9
8月26日		排放速率	kg/h	2.59	0.731	1.12	1.48
		实测浓度	mg/m³	106	92	90	96
	氮氧化物	计算浓度	mg/m³	71	69	69	70
		排放速率	kg/h	11.9	11.2	11.2	11.4
		实测浓度	mg/m³	ND (3)	ND (3)	ND (3)	1
	一氧化碳	计算浓度	mg/m³	1	1	1	1
		排放速率	kg/h	1	1	1	1
		实测浓度	mg/m³	ND (0.2)	ND (0.2)	ND (0.2	) /
	氯化氢	计算浓度	mg/m³	1	1	1	1
		排放速率	kg/h	1	1	1	1

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 23 页 共 41 页

		管道名称		管道形状	烟道截	面(m²)	排气筒高度(m
监测 日期	©2 6#	生活垃圾焚	烧炉	圆形	4.	524	80
	监测	监测项目		第一次	第二次	第三次	均值
	烟气标	干流量	m³/h	120959	124164	119003	3 121375
	烟气	温度	'n	169.0	173.9	174.7	172.5
	湿	度	%	20.5	19.6	21.3	20.5
	流	流速		15.3	15.7	15.4	15.5
	氧1	氧含量		7.7	7.4	5.4	6.8
		实测浓度 表及其化		1.34×10 ⁻⁴	1.44×10 ⁻⁴	1.30×1	0 ⁻⁴ 1.36×10 ⁻¹
	汞及其化 合物	计算浓度	mg/m³	1.01×10 ⁻⁴	1.06×10 ⁻⁴	8.33×1	0 ⁻⁵ 9.68×10 ⁻⁵
		排放速率	kg/h	1.62×10 ⁻⁵	1.79×10 ⁻⁵	1.55×1	0-5 1.65×10-
	烟气标	干流量	m³/h	119098	119748	119184	1 119343
	烟气	温度	°C	172.0	173.0	171.0	172. 0
	温	度	%	21.2	22.6	21.8	21.9
	流	速	m/s	15.3	15.7	15.4	15.5
	氣:	含量	%	6.8	7.7	7.7	7.4
		实测浓度	mg/m ³	2.08×10 ⁻⁴	3.03×10 ⁻⁴	2.03×1	0 ⁻⁴ 2.38×10 ⁻
	镉	计算浓度	mg/m³	1.46×10 ⁻⁴	2.28×10 ⁻⁴	1.53×1	0-4 1.76×10-
		排放速率	kg/h	2.48×10 ⁻⁵	3.63×10 ⁻⁵	2.42×1	0 ⁻⁵ 2.84×10 ⁻⁵
		实测浓度	mg/m ³	2.19×10 ⁻⁵	2.17×10 ⁻⁵	8.83×1	0 ⁻⁶ 1.75×10 ⁻¹
	铊	计算浓度	mg/m³	1.54×10 ⁻⁵	1.63×10 ⁻⁵	6.64×1	0 ⁻⁶ 1.28×10 ⁻¹
		排放速率	kg/h	$2.61 \times 10^{-6}$	2.60×10-6	1.05×1	0 ⁻⁶ 2.09×10 ⁻⁴
		实测浓度	mg/m ³	2.30×10 ⁻⁴	3.25×10 ⁻⁴	2.12×1	0-4 2.56×10-
	镉+铊	计算浓度	mg/m³	1.62×10 ⁻⁴	2.44×10 ⁻⁴	1.59×1	0 ⁻⁴ 1.88×10 ⁻
		排放速率	kg/h	2.74×10 ⁻⁵	3.89×10 ⁻⁵	2.53×10	0 ⁻⁵ 3.05×10 ⁻⁵
		实测浓度	mg/m³	1.62×10 ⁻⁴	2.65×10 ⁻⁴	1.78×1	0-4 2.02×10-
	锑	计算浓度	mg/m³	1.14×10 ⁻⁴	1.99×10 ⁻⁴	1.34×1	0 ⁻⁴ 1.49×10 ⁻⁴
		排放速率	kg/h	$1.93 \times 10^{-5}$	3.17×10 ⁻⁵	2.12×10	0-5 2.41×10-5

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 24 页 共 41 页

	1	<b>首</b> 道名称		管道形状	烟道截	面 (m²)	排气	,筒高度(m)
监测 日期	©2 6#5	上活垃圾焚	烧炉	圓形	4.:	524		80
H 141	监测	项目	单位	第一次	第二次	第三次		均值
		实测浓度	mg/m³	ND (2×10 ⁻⁴ )	ND (2×10 ⁻⁴ )	ND (2×	10-4)	1
	砷	计算浓度	mg/m³	1	1	1		1
		排放速率	kg/h	1	1	1		1
		实测浓度	mg/m³	3.12×10 ⁻³	4.83×10 ⁻³	3.12×1	0-3	3.69×10 ⁻³
	铅	计算浓度	mg/m³	2.20×10 ⁻³	3.63×10 ⁻³	2.35×1	0-3	2.73×10 ⁻³
		排放速率	kg/h	3.72×10 ⁻⁴	5.78×10 ⁻⁴	3.72×1	0-4	4.41×10 ⁻⁴
		实测浓度	mg/m³	3.21×10 ⁻³	2.47×10 ⁻³	1.13×1	0-3	2.27×10 ⁻³
	铬	计算浓度	mg/m³	2.26×10 ⁻³	1.86×10 ⁻³	8.50×1	0-4	1.66×10 ⁻³
		排放速率	kg/h	3.82×10 ⁻⁴	2.96×10 ⁻⁴	1.35×1	0-4	2.71×10-4
		实测浓度	mg/m³	4.53×10-5	5.36×10 ⁻⁵	3.53×1	0-5	4.47×10 ⁻⁵
	钴	计算浓度	mg/m³	3.19×10 ⁻⁵	4.03×10 ⁻⁵	2.65×1	0-5	3.29×10 ⁻⁵
		排放速率	kg/h	5.40×10-6	6.42×10 ⁻⁶	4.21×1	0-6	5.34×10-6
		实测浓度	mg/m³	1.21×10 ⁻³	1.98×10 ⁻³	1.14×1	0-3	1.44×10 ⁻³
	铜	计算浓度	mg/m³	8.52×10 ⁻⁴	1.49×10 ⁻³	8.57×1	0-4	1.07×10 ⁻³
		排放速率	kg/h	1.44×10 ⁻⁴	2.37×10 ⁻⁴	1.36×1	0-4	1.72×10
		实测浓度	mg/m ³	1.72×10 ⁻³	3.00×10 ⁻³	1.71×1	0-3	2.14×10 ⁻³
	锰	计算浓度	mg/m³	1.21×10 ⁻³	2.26×10 ⁻³	1.29×1	0-3	1.59×10
		排放速率	kg/h	2.05×10 ⁻⁴	3.59×10 ⁻⁴	2.04×1	0-4	2.56×10
		实测浓度	mg/m³	4.83×10 ⁻⁴	4.02×10 ⁻⁴	1.47×1	0-4	3.44×10
	镍	计算浓度	mg/m³	3.40×10 ⁻⁴	3.02×10 ⁻⁴	1.11×1	0-4	2.51×10
		排放速率	kg/h	5.75×10-5	4.81×10 ⁻⁵	1.75×1	0-5	4.10×10-
	锑+砷+铅+	实测浓度	mg/m³	9.95×10 ⁻³	0.0130	7.46×1	0-3	0.01014
	络+钴+铜+	计算浓度	mg/m³	7.01×10 ⁻³	0.0098	5.61×1	0-3	7.47×10
	锰+镍	排放速率	kg/h	1.19×10 ⁻³	1.56×10 ⁻³	8.89×1	0-4	1.21×10

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 25 页 共 41 页

		管道名称		管道形状	烟道截	面 (m²)	排气筒高度(m
监测 日期	©2 6#5	生活垃圾焚	烧炉	圆形	4.	524	80
	监测	监测项目		第一次	第二次	第三次	均值
	烟气标	干流量	m³/h	118403	116886	114555	116615
	烟气	温度	rc	186.8	187.0	186.1	186.6
	湿	度	%	18.6	19.6	20.3	19.5
	流	速	m/s	15.3	15.3	15.1	15.2
	含氧	<b>武量</b>	%	7.7	7.1	8.3	7.7
	颗粒物	实测浓度	mg/m³	1.6	1.7	1.6	1.6
		计算浓度	mg/m³	1,2	1.2	1.3	1.2
		排放速率	kg/h	0.189	0.199	0.183	0.190
		实测浓度	mg/m³	26	14	21	20
2025年	二氧化硫	计算浓度	mg/m³	20	10	17	16
8月27日		排放速率	kg/h	3.08	1.64	2.41	2.38
		实测浓度	mg/m³	78	118	73	90
	氮氧化物	计算浓度	mg/m³	59	85	57	67
		排放速率	kg/h	9.24	13.8	8.36	10.5
		实测浓度	mg/m³	ND (3)	ND (3)	ND (3)	1
	一氧化碳	计算浓度	mg/m³	1	,	1	1
		排放速率	kg/h	1	/	1	/
		实测浓度	mg/m³	ND (0.2)	ND (0.2)	ND (0.2	) /
	氯化氢	计算浓度	mg/m³	1	1	1	1
		排放速率	kg/h	/	1	1	,

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 26 页 共 41 页

		管道名称		管道形状	烟道截	面 (m²)	排气筒高度(m)
监测 日期	©2 6#5	生活垃圾焚	烧炉	圓形	4.	524	80
H 741	监测	监测项目		第一次	第二次	第三次	均值
	烟气标	干流量	m³/h	109921	114472	117763	114052
	烟气	温度	°C	183.9	181.9	182.2	182.7
	湿	湿度		21.3	20.6	20.9	20.9
	流	流速		14.6	15.0	15.5	15.0
	含氧	含氣量		7.3	6.8	6.8	7.0
	实测浓度		mg/m³	9.7×10 ⁻⁵	7.1 × 10 ⁻⁵	5.6×10	7.5×10 ⁻⁵
	汞及其化 合物	汞及其化 合物 计算浓度		7.08×10 ⁻⁵	5.00×10 ⁻⁵	3.94×10	5.34×10
	1.2	排放速率	kg/h	1.07×10 ⁻⁵	8.13×10 ⁻⁶	6.59×10	6 8.47×10-6
	烟气标	干流量	m³/h	109197	108579	106229	108002
	烟气	温度	°C	186.1	186.7	185.6	186.1
	湿	湿度		20.9	21.8	22.6	21.8
	流	速	m/s	14.5	14.6	14.4	14.5
	含氧	<b>氧量</b>	%	7.1	9.0	7.0	7.7
		实测浓度	mg/m³	2.68×10 ⁻⁴	4.74×10 ⁻⁴	3.60×10	4 3.67×10 ⁻⁴
	镉	计算浓度	mg/m³	1.93×10-4	3.95×10 ⁻⁴	2.57×10	-4 2.82×10-
		排放速率	kg/h	2.93×10 ⁻⁵	5.15×10 ⁻⁵	3.82×10	-5 3.97×10 ⁻⁵
		实测浓度	mg/m³	1.58×10 ⁻⁵	ND (8×10-6)	ND (8×10	)-6) /
	铊	计算浓度	mg/m³	1.14×10 ⁻⁵	1	1	1
		排放速率	kg/h	1.73×10 ⁻⁶	1	1	1
		实测浓度	mg/m ³	2.84×10 ⁻⁴	4.74×10 ⁻⁴	3.60×10	-4 3.73×10-
	镉+铊	计算浓度	mg/m³	2.04×10 ⁻⁴	3.95×10 ⁻⁴	2.57×10	-4 2.85×10-
		排放速率	kg/h	3.10×10 ⁻⁵	5.15×10 ⁻⁵	3.82×10	-5 4.02×10-5
		实测浓度	mg/m³	2.06×10 ⁻⁴	4.25×10 ⁻⁴	2.98×10	-4 3.10×10-
	锑	计算浓度	mg/m ³	1.48×10 ⁻⁴	3.54×10 ⁻⁴	2.13×10	-4 2.38×10-
		排放速率	kg/h	2.25×10 ⁻⁵	4.61×10 ⁻⁵	3.17×10	-5 3.34×10

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 27 页 共 41 页

	3	管道名称		管道形状	烟道截	面 (m²)	排气	,筒高度(m
监测 日期	©2 6#5	主活垃圾焚	烧炉	圆形	4	.524		80
	监测	监测项目		第一次	第二次	第三次	<b>x</b>	均值
		实测浓度	mg/m³	ND (2×10 ⁻⁴ )	2.24×10 ⁻⁴	ND (2×	10-4)	1
	砷	计算浓度	mg/m³	/	1.87×10 ⁻⁴	1		1
		排放速率	kg/h	/	2.43×10 ⁻⁵	1	=====	1
		实测浓度	mg/m³	3.98×10 ⁻³	8.09×10 ⁻³	5.93×	10-3	6.00×10
	铅	计算浓度	mg/m³	2.86×10 ⁻³	6.74×10 ⁻³	4.24×	10-3	4.61×10
		排放速率	kg/h	4.35×10 ⁻⁴	8.78×10 ⁻⁴	6.30×	10-4	6.48×10
		实测浓度	mg/m³	1.39×10 ⁻³	4.52×10 ⁻³	1.38×1	10-3	2.43×10
	铬	计算浓度	mg/m³	1.00×10 ⁻³	3.77×10 ⁻³	9.86×	10-4	1.92×10
		排放速率	kg/h	1.52×10 ⁻⁴	4.91×10 ⁻⁴	1.47×	10-4	2.63×10
		实测浓度	mg/m³	4.44×10 ⁻⁵	9.62×10 ⁻⁵	5.56×1	10-5	6.54×10
	钴	计算浓度	mg/m³	3.19×10 ⁻⁵	8.02×10 ⁻⁵	3.97×	10-5	5.06×10
		排放速率	kg/h	4.85×10 ⁻⁶	1.04×10 ⁻⁵	5.91×	10-6	7.05×10
		实测浓度	mg/m³	1.55×10 ⁻³	3.22×10 ⁻³	2.23×	10-3	2.33×10
	铜	计算浓度	mg/m³	1.12×10 ⁻³	2.68×10 ⁻³	1.59×	10-3	1.80×10
	9	排放速率	kg/h	1.69×10-4	3.50×10 ⁻⁴	2.37×	10-4	2.52×10
		实测浓度	mg/m³	2.37×10 ⁻³	4.88×10 ⁻³	3.41×	10-3	3.55×10
	锰	计算浓度	mg/m³	1.71×10 ⁻³	4.07×10 ⁻³	2.44×	10-3	2.74×10
	0	排放速率	kg/h	2.59×10 ⁻⁴	5.30×10 ⁻⁴	3.62×	10-4	3.84×10
		实测浓度	mg/m³	2.72×10-4	9.86×10 ⁻⁴	2.45×	10-4	5.01×10
	镍	计算浓度	mg/m³	1.96×10-4	8.22×10 ⁻⁴	1.75×	10-4	3.98×10
		排放速率	kg/h	2.97×10 ⁻⁵	1.07×10 ⁻⁴	2.60×	10-5	5.43×10
	锑+砷+铅+	实测浓度	mg/m³	9.81×10 ⁻³	0.0224	0.013	5	0.0152
	络+钴+铜+	计算浓度	mg/m³	7.06×10 ⁻³	0.0187	0.009	6	0.0118
	锰+镍	排放速率	kg/h	1.07×10 ⁻³	2.43×10 ⁻³	1.43×	10-3	1.64×10

注: "ND"表示未检出或低于方法检出限

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 28 页 共 41 页

#### 6.4 无组织废气

无组织废气检测结果见表 6-5, 监测期间气象情况见表 6-6:

表 6-5 无组织废气监测结果

			检	测结果(单位	ī: mg/m³; 臭	气浓度无量纲)	
采样日期	检测项目	频次	●1 厂区上风	●2 厂区下风	●3 厂区下风	●4 厂区下风	最大值
			向	向1	向2	向3	取入山
		1	0.264	0.352	0.366	0.346	0.366
	颗粒物	2	0.249	0.350	0.353	0.326	0.353
		3	0.255	0.343	0.356	0.319	0.356
		1	0.11	0.13	0.13	0.16	0.16
	氨气	2	0.15	0.15	0.12	0.15	0.15
2025年		3	0.12	0.14	0.13	0.14	0.14
8月26日	硫化氢	1	0.020	0.002	0.003	0.002	0.020
		2	0.002	0.003	0.002	0.002	0.003
		3	0.004	0.003	0.005	0.002	0.005
		1	11	14	12	17	17
	臭气浓度	2	12	14	13	16	16
		3	13	13	16	18	18
		1	0.263	0.353	0.345	0.333	0.353
	颗粒物	2	0.273	0.346	0.341	0.328	0.346
		3	0.259	0.341	0.322	0.334	0.341
		1	0.14	0.13	0.13	0.14	0.14
2025年8月27日	氨气	2	0.10	0.15	0.10	0.15	0.15
0 /1 4/ FI		3	0.18	0.16	0.16	0.13	0.18
		1	0.002	0.002	0.002	0.002	0.002
	硫化氢	2	0.002	0.003	0.003	0.003	0.003
		3	0.002	0.002	0.003	0.003	0.003

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 29 页 共 41 页

采样日期	检测项目	频次	检	检测结果(单位: mg/m³; 臭气浓度无量纲)						
			●1 厂区上风 向	.●2 厂区下风 向 1	●3 厂区下风 向 2	●4 厂区下风 向 3	最大值			
		1	19	17	17	18	19			
	臭气浓度	2	19	16	19	17	19			
		3	16	18	16	19	19			

#### 表 6-6 监测期间气象参数测试一览表

时间	天气	气温(℃)	气压 (kPa)	风向	风速 (m/s)
	晴	42	100.5	南	1.9
2025年8月26日	晴	44	100.3	南	1.9
	晴	44	100.3	南	1.9
	晴	38	100.8	南	2.1
2025年8月27日	晴	40	100.6	东南	2.4
	晴	43	100.5	南	2.1

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 30 页 共 41 页

#### 6.5 土壤

#### 土壤检测结果见表 6-7:

表 6-7 土壤检测结果

				检测	结果	
监测日期	检测项目	单位	■1 垃圾库旁	■2 渗滤液处 理站附近	■3 张家岭农 用地	■4 双凤魏农 用地
	点位坐标	1			E: 114°13′25.11″ N: 30°22′07.13″	
	采样深度	m	0.2	0.2	0.2	0.2
	pН	1	8.54	8.38	8.41	8.31
	汞	mg/kg	0.101	0.136	0.0537	0.180
	铬(六价)	mg/kg	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	铜	mg/kg	45	68	34	32
2025年	铅	mg/kg	53	79	46	38
8月26日	砷	mg/kg	13.8	48.5	14.8	8.68
	镉	mg/kg	0.55	1.15	0.03	0.20
	镍	mg/kg	36	78	26	13
	锰	mg/kg	708	1.84×10 ³	576	449
	钴	mg/kg	15.5	34.6	13.2	10.7
	铊	mg/kg	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
	锑	mg/kg	1.82	4.03	1.85	1.91

注: "ND"表示未检出或低于方法检出限;

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 31 页 共 41 页

#### 6.6 固体废物

炉渣结果见表 6-8:

表 6-8 炉渣监测结果

11年301年45	III-inite C	M.H.	监测	结果
监测点位	监测项目	単位 -	2025年8月26日	2025年8月27日
	含水率	%	20.3	19.5
	汞	mg/L	ND (0.00002)	ND (0.00002)
	硒	mg/L	0.00464	0.00202
	铜	mg/L	ND (0.01)	ND (0.01)
	铅	mg/L	ND (0.03)	ND (0.03)
	锌	mg/L	19.7	0.78
□□飞灰固化车	镉	mg/L	ND (0.01)	ND (0.01)
间固化物	铍	mg/L	ND (0.004)	ND (0.004)
	钡	mg/L	0.37	0.45
	镍	mg/L	ND (0.02)	ND (0.02)
	总铬	mg/L	0.13	ND (0.02)
	砷	mg/L	0.0136	0.0275
	铬(六价)	mg/L	ND (0.004)	ND (0.004)
Ī	pН	1	11.36	11.43
□2 焚烧炉炉渣	热灼减率	%	2.2	4.1

注: "ND"表示未检出或低于方法检出限;

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 32 页 共 41 页

### 6.7 噪声

#### 噪声监测结果见表 6-9:

表 6-9 噪声监测结果[单位: dB(A)]

			监测点位	监测	结果
监测时间	编号	监测点位	GPS 坐标	昼间 (13:00-17:30)	夜间 (22:00-23:30)
	<b>▲</b> 1	厂界东侧外 1m 处 1	E: 114°13'36.39" N: 30°21'24.77"	46.9	40.6
	▲2	厂界东侧外 1m 处 2	E: 114°13'36.62" N: 30°21'21.30"	50.7	46.1
	▲3	厂界南侧外 lm 处 l	E: 114°13′30.03″ N: 30°21′18.69″	49.2	47.4
2025 年	▲4	厂界南侧外 1m 处 2	E: 114°13′17.13″ N: 30°21′11.32″	54.6	49.0
8月26日	▲5	厂界西侧外 lm 处 l	E: 114°13′12.39″ N: 30°21′10.98	53.5	48.7
	▲6	厂界西侧外 1m 处 2	E: 114°13′08.42″ N: 30°21′15.55	47.1	45.4
	▲7	厂界北侧外 Im 处 I	E: 114°13′14.97″ N: 30°21′19.84	52.4	47.2
	▲8	厂界北侧外 1m 处 2	E: 114°13'32.03" N: 30°21'25.81	51.9	42.0
	<b>▲</b> 1	厂界东侧外 1m 处 1	E: 114°13′36.39″ N: 30°21′24.77″	49.2	40.3
	▲2	厂界东侧外 1m 处 2	E: 114°13'36.62" N: 30°21'21.30"	51.7	47.4
	▲3	厂界南侧外 1m 处 1	E: 114°13′30.03″ N: 30°21′18.69″	50.0	46.2
2025 年	▲4	厂界南侧外 1m 处 2	E: 114°13′17.13″ N: 30°21′11.32″	53.3	49.3
8月27日	▲5	厂界西侧外 lm 处 l	E: 114°13′12.39″ N: 30°21′10.98	55.5	48.7
	▲6	厂界西侧外 1m 处 2	E: 114°13′08.42″ N: 30°21′15.55	46.3	45.9
	▲7	厂界北侧外 1m 处 1	E: 114°13′14.97″ N: 30°21′19.84	53.4	47.0
	▲8	厂界北侧外 1m 处 2	E: 114°13'32.03" N: 30°21'25.81	51.4	43.0

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 33 页 共 41 页

### 7、质量控制结果

### 7.1 废水质量控制结果

废水质量控制结果见7-1~7-2:

	_		表 7-1	废水监测质控结果			_
监测项目	全程序 空白	检出限	评价	平行样品 测定浓度	平行双样 相对偏差	平行双样相对 偏差允许限值	评价
	ND	0.025 mg/L	合格	0.030 mg/L v 0.038 mg/L	11.8%	≤20%	合格
氨氮	ND	0.025 mg/L	合格	0.052 mg/L、0.044 mg/L	8.3%	≤20%	合格
ル当衛を見	ND	4 mg/L	合格	52.8 mg/L、53.6 mg/L	0.8%	≤15%	合格
化学需氧量	ND	4 mg/L	合格	64.5 mg/L、64.5 mg/L	0	≤15%	合格
エロルル命与具	ND	0.5 mg/L	合格	12.17 mg/L、12.52 mg/L	1.4%	≤20%	合格
五日生化需氧量	ND	0.5 mg/L	合格	14.74 mg/L、14.14 mg/L	2.1%	≤20%	合格
<b>*</b> =	ND	0.05 mg/L	合格	10.5 mg/L、10.6 mg/L	0.47%	≤5%	合格
总氮	ND	0.05 mg/L	合格	10.4 mg/L、10.4 mg/L	0	≤5%	合格
A T#	ND	0.01 mg/L	合格	0.056 mg/L、0.056 mg/L	0	≤10%	合格
总磷	ND	0.01 mg/L	合格	0.058 mg/L、0.057 mg/L	0.9%	≤10%	合格
M.60	ND	0.004 mg/L	合格	ND (0.004) ND (0.004)	1	1	1
总铬	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)	1	1	1
£8.1.1∧\	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)	1	1	1
铬(六价)	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)	1	1	1
	ND	0.06 mg/L	合格	0.14 mg/L、0.15 mg/L	3.4%	1	1
动植物油	ND	0.06 mg/L	合格	0.14 mg/L、0.15 mg/L	3.4%	1	1
总汞	ND	0.00004 mg/L	合格	ND(0.00004),ND(0.00004)	1	/	1
总砷	ND	0.0003 mg/L	合格	8.8 μg/L、8.8 μg/L	0	≤20%	合格
# <b>4</b> =	ND	0.00005 mg/L	合格	0.33 μg/L、0.34 μg/L	1.5%	≤20%	合格
总镉	ND	0.00005 mg/L	合格	0.33 μg/L、0.26 μg/L	11.9%	≤20%	合格
es en	ND	0.00009 mg/L	合格	1.92 μg/L、1.94 μg/L	0.5%	≤20%	合格
总铅	ND	0.00009 mg/L	合格	0.66 μg/L、0.64 μg/L	1.5%	≤20%	合格

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 34 页 共 41 页

监测项目	全程序 空白	检出限	评价	平行样品 测定浓度	平行双样 相对偏差	平行双样相对 偏差允许限值	评化
备注	2、平行列 (HJ/T37	双样偏差依 /3-2007)中	表1相关要	染源监测质量保证与			

W 202		加标回	1收分析	
检测项目	分析编号	回收率(%)	允许回收率(%)	结果评判
	空白加标	102	90~110	符合要求
農氨	空白加标	102	90~110	符合要求
	HJ25082001-1-26-1 加标	93.0	90~110	符合要求
魔魔	HJ25082001-2-26-1 加标	94.5	90~110	符合要求
14.78	HJ25082001-1-26-1 加标	100	90~110	符合要求
总磷	HJ25082001-2-26-1 加标	100	90~110	符合要求
	空白加标	95.6	75~138	符合要求
动植物油	空白加标	95.6	75~138	符合要求
	HJ25082001-1-26-1 加标	88.5	85~115	符合要求
总铬	HJ25082001-2-26-1 加标	89.5	85~115	符合要求
69(24)	HJ25082001-1-26-1 加标	105	85~115	符合要求
铬(六价)	HJ25082001-2-26-1 加标	101	85~115	符合要求
M 6W	空白加标	92.5	70~130	符合要求
总镉	空白加标	93.8	70~130	符合要求
34 An	空白加标	82.5	70~130	符合要求
总铅	空白加标	86.2	70~130	符合要求

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 35 页 共 41 页

#### 7.2 地下水质量控制结果

地下水质量控制结果见7-3~7-4:

表 7-3 地下水监测质控结果

监测项目	全程序 空白	检出限	评价	平行样品 测定浓度	平行双样 相对偏差	平行双样相对 偏差允许限值	评价
感感	ND	0.025 mg/L	合格	0.090 mg/L、0.096 mg/L	3.2%	≤20%	合格
安氏员	ND	0.025 mg/L	合格	0.334 mg/L、0.356 mg/L	3.2%	≤20%	合格
铬(六价)	ND	0.004 mg/L	合格	ND (0.004) ND (0.004)	1	1	1
增(八川)	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)	1	1	1
硝酸盐	ND	0.08 mg/L	合格	1.60 mg/L、1.61 mg/L	0.3%	≤5%	合格
1月日久 111	ND	0.08 mg/L	合格	1.25 mg/L、1.26 mg/L	0.4%	≤5%	合格
亚硝酸盐	ND	0.003 mg/L	合格	ND (0.003) , ND (0.003)	1	1	1
业铜酸盐	ND	0.003 mg/L	合格	0.027 mg/L、0.027 mg/L	0	≤20%	合格
挥发性酚类	ND	0.0003 mg/L	合格	ND (0.0003) , ND (0.0003)	1	1	1
(以苯酚计)	ND	0.0003 mg/L	合格	ND (0.0003) , ND (0.0003)	1	1	1
氰化物	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)	1	1	1
育门七十岁	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)	1	1	1
石油类	ND	0.01 mg/L	合格	ND (0.01) ND (0.01)	1	1	1
11/11/19	ND	0.01 mg/L	合格	ND (0.01) , ND (0.01)	1	1	1
总硬度	ND	0.05 mmol/L	合格	282 mg/L、286 mg/L	0.7%	≤8%	合格
心灰技	ND	0.05 mmol/L	合格	313 mg/L、314 mg/L	0.2%	≤8%	合格
氟化物	ND	0.006 mg/L	合格	0.4596 mg/L、0.4733 mg/L	1.5%	≤10%	合格
<b>州(1七十</b> 岁	ND	0.006 mg/L	合格	0.5423 mg/L、0.5451 mg/L	0.3%	≤10%	合格
溶解性总固	ND	1	合格	462 mg/L、472 mg/L	1.1%	/	1
体	ND	1	合格	487 mg/L、499 mg/L	1.2%	1	1
耗氧量	ND	0.5 mg/L	合格	0.92 mg/L、0.96 mg/L	2.1%	≤20%	合格
和美里	ND	0.5 mg/L	合格	0.92 mg/L、0.88 mg/L	2.2%	≤20%	合格

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 36 页 共 41 页

监测项目	全程序 空白	检出限	评价	平行样品 测定浓度	平行双样 相对偏差	平行双样相对 偏差允许限值	评价
******	ND	0.018 mg/L	合格	152.9 mg/L、152.9 mg/L	0	≤10%	合格
硫酸盐	ND	0.018 mg/L	合格	152.5 mg/L、151.6 mg/L	0.3%	≤10%	合格
	ND	0.007 mg/L	合格	64.52 mg/L、64.52 mg/L	0	≤10%	合格
氯化物	ND	0.007 mg/L	合格	63.61 mg/L、63.94 mg/L	0.3%	≤10%	合格
铁	ND	0.02 mg/L	合格	ND (0.02) , ND (0.02)	1	1	1
锰	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)	1	1	1
钠	ND	0.12 mg/L	合格	17.1 mg/L、16.1 mg/L	3.0%	≤25%	合格
汞	ND	0.00004 mg/L	合格	ND (0.00004) ND (0.00004)	1	1	1
砷	ND	0.0003 mg/L	合格	3.2 μg/L、3.3 μg/L	1.5%	≤20%	合格
镉	ND	0.00005 mg/L	合格	ND (0.00005) , ND (0.00005)	1	1	1
铅	ND	0.00009 mg/L	合格	ND (0.00009), ND (0.00009)	1	1	1
备注	2、平行		各指标	, F方法检出限; 示检测方法相关要求; 分析方法检出限,方法检出限	见表 4-1。		

#### 表 7-4 地下水监测质控结果

		加标图	回收分析	
检测项目	分析编号	回收率(%)	允许回收率(%)	结果评判
有領	HJ25082001-1-1-1 加标	97.5	95~105	符合要求
展慶	HJ25082001-2-1-1 加标	103	95~105	符合要求
	HJ25082001-1-1-1 加标	100	90~110	符合要求
硝酸盐	HJ25082001-2-1-1 加标	100	90~110	符合要求
T PKZ641	HJ25082001-1-1-1 加标	95.0	85~115	符合要求
亚硝酸盐	HJ25082001-2-1-1 加标	99.4	85~115	符合要求
挥发性酚类(以苯 酚计)	HJ25082001-1-1-1 加标	102	85~115	符合要求
	HJ25082001-2-1-1 加标	95.0	85~115	符合要求

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 37 页 共 41 页

4A NOTE III		加标图	回收分析	
检测项目	分析编号	回收率(%)	允许回收率(%)	结果评判
氰化物	HJ25082001-1-1-1 加标	100	85~115	符合要求
會八七十分	HJ25082001-2-1-1 加标	100	85~115	符合要求
总硬度	HJ25082001-1-1-1 加标	96.0	95~105	符合要求
心映度	HJ25082001-2-1-1 加标	98.0	95~105	符合要求
氟化物	空白加标	98.8	80~120	符合要求
	空白加标	98.8	80~120	符合要求
物(上仏)	HJ25082001-1-1-1 加标	101	85~115	符合要求
铬(六价)	HJ25082001-2-1-1 加标	101	85~115	符合要求
硫酸盐	空白加标	101	80~120	符合要求
明正與安益	空白加标	101	80~120	符合要求
氯化物	空白加标	98.5	80~120	符合要求
象门七节	空白加标	98.5	80~120	符合要求
钠	空白加标	113	70~120	符合要求
镉	空白加标	100	70~130	符合要求
140	空白加标	112	70~130	符合要求
铅	空白加标	110	70~130	符合要求
†H	空白加标	118	70~130	符合要求

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 38 页 共 41 页

#### 7.3 气样质量控制结果

#### 废气质量控制结果见表 7-5:

表 7-5 有组织气样监测质控结果

	空白村	<b>羊分析</b>		加标回	女分析	
检测项目	检测结果	合格情况	分析编号	回收率(%)	允许回收率 (%)	结果评判
<b>-</b> 1	ND	合格	空白加标	91.1	90~110	符合要求
氯化氫	ND	合格	空白加标	91.3	90~110	符合要求
镉	ND	合格	空白加标	100	70~120	符合要求
镍	ND	合格	空白加标	98.0	70~120	符合要求
铊	ND	合格	空白加标	102	70~120	符合要求
锑	ND	合格	空白加标	100	70~120	符合要求
砷	ND	合格	空白加标	99.5	70~120	符合要求
铅	ND	合格	空白加标	102	70~120	符合要求
铬	ND	合格	空白加标	100	70~120	符合要求
钴	ND	合格	空白加标	99.5	70~120	符合要求
铜	ND	合格	空白加标	102	70~120	符合要求
锰	ND	合格	空白加标	99.5	70~120	符合要求

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 39 页 共 41 页

#### 7.4 固体废物质量控制结果

固体废物质量控制结果见表 7-6~7-7:

表 7-6 固体废物监测质控结果

监测项目	全程序 空白	检出限	评价	平行样品 測定浓度		平行双样相对 偏差允许限值	1344.44
含水率	ND	1	合格	20.1%、20.5%	1.0%	≤10%	合格
砷	ND	0.00010 mg/L	合格	13.7 µg/L、13.6 µg/L	0.4%	≤20%	合格
铬(六价)	ND	0.004 mg/L	合格	ND (0.004) ND (0.004)	/	1	1
硒	ND	0.00010 mg/L	合格	4.67 μg/L、4。60 μg/L	0.8%	≤20%	合格
汞	ND	0.00002 mg/L	合格	ND(0.00002),ND(0.00002)	1	1	1
热灼减率	ND	0.2 %	合格	2.2 %、 2.1 %	2.3%	≤20%	合格
备注	2、平行	<b>了双样偏差依</b> 抗	居各指	, 于方法检出限; 标检测方法相关要求; F分析方法检出限,方法检出	<b>¦限见表 4-1</b>		

#### 表 7-7 固体废物监测质控结果

A SHEET	e.	加标图	回收分析	
检测项目	分析编号	回收率(%)	允许回收率(%)	结果评判
总铬	空白加标	94.7	70~120	符合要求
铜	空白加标	102	70~120	符合要求
铅	空白加标	95.1	70~120	符合要求
锌	空白加标	71.8	70~120	符合要求
镉	空白加标	95.8	70~120	符合要求
铍	空白加标	98.3	70~120	符合要求
钡	空白加标	81.6	70~120	符合要求
镍	空白加标	80.2	70~120	符合要求

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 40 页 共 41 页

#### 7.5 土壤质量控制结果

#### 土壤质量控制结果见表 7-8~7-9:

表 7-8 固体废物监测质控结果

监测项目	全程序 空白	检出限	评价	平行样品 测定浓度	平行双样 相对偏差	平行双样相对 偏差允许限值	144
铊	ND	0.1 mg/kg	合格	ND (0.1) , ND (0.1)	1	1	1
锑	ND	0.01 mg/kg	合格	1.69 mg/kg、1.94 mg/kg	6.9%	≤20%	合格
砷	ND	0.01 mg/kg	合格	13.8 mg/kg 、13.8 mg/kg	0	≤15%	合格
镉	ND	0.01 mg/kg	合格	0.60 mg/kg 、 0.50 mg/kg	13%	≤20%	合格
汞	ND	0.0002 mg/kg	合格	96.9 μg/kg、105 μg/kg	4.0%	≤25%	合格
铬(六价)	ND	0.5 mg/kg	合格	ND (0.5) , ND (0.5)	1	/	1
铜	ND	1 mg/kg	合格	44 mg/kg、46 mg/kg	2.2%	≤20%	合格
铅	ND	10 mg/kg	合格	51 mg/kg 、55 mg/kg	3.8%	≤20%	合格
镍	ND	3 mg/kg	合格	33 mg/kg、38 mg/kg	7.0%	≤20%	合格
锰	ND	0.4 mg/kg	合格	698 mg/kg、718 mg/kg	1.4%	≤30%	合格
钴	ND	0.4 mg/kg	合格	14.6 mg/kg、16.4 mg/kg	5.8%	≤30%	合格
备注	2、平行	<b>丁</b> 双样偏差依挂	居各指	于方法检出限; 标检测方法相关要求; - 分析方法检出限,方法检员	出限见表 4-1		

表 7-9 土壤监测质控结果

AA TOURT CO	加标回收分析						
检测项目	分析编号	回收率(%)	允许回收率(%)	结果评判			
铬(六价)	空白加标	95.0	70~130	符合要求			

Tel: 027-83901064 E-mail: whhj_testing@163.com



报告编号: HJ202508153

第 41 页 共 41 页

#### 7.6 噪声质量控制结果

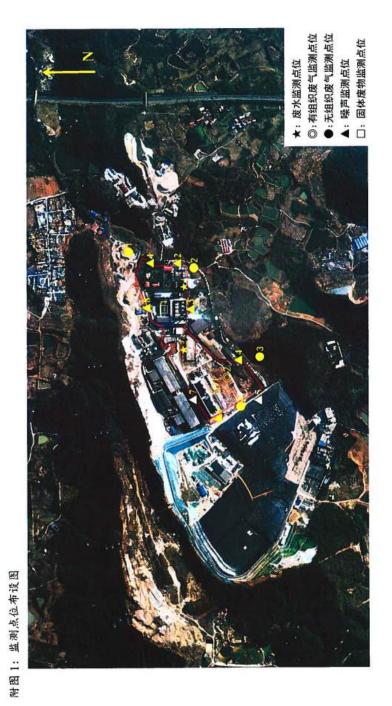
表7-10 噪声监测质控结果

测量日期	校准声级(dB)A			
	测量前	测量后	差值	备 注
2025年8月26日	93.8	93.8	0	测量前、后校准声级差 值小于 0.5 dB(A), 测量数据有效。
2025年8月27日	93.8	93.8	0	

*****报告结束*****

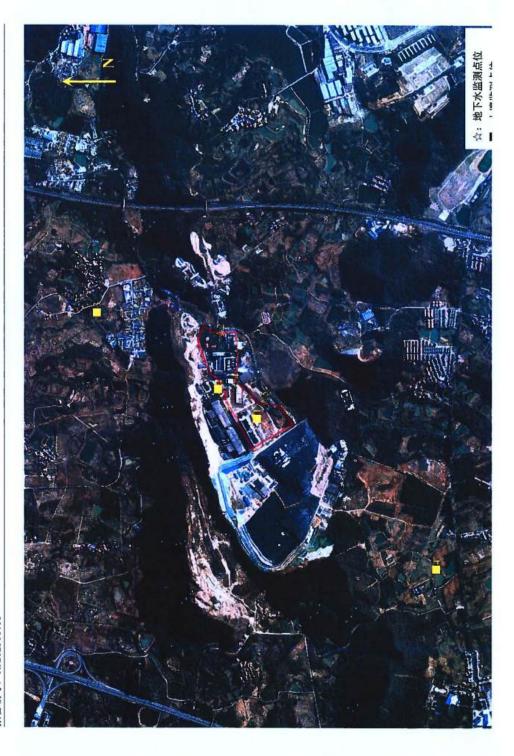
Tel: 027-83901064

E-mail: whhj_testing@163.com


Tel: 027-83901064

七二

报


影

构







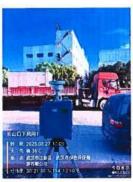




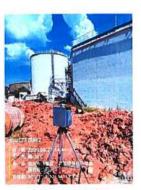
报告编号: HJ202508153

附图 2: 现场监测照片




★1 渗滤液处理站车间排口




★2 厂区总排口



●1 厂区上风向



●2 厂区下风向 1



●3 厂区下风向 2

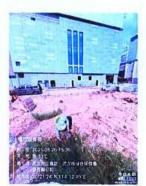


●4 厂区下风向 3

Tel: 027-83901064

E-mail: whhj_testing@163.com




报告编号: HJ202508153



◎1 5#生活垃圾焚烧炉




◎2 6#生活垃圾焚烧炉



■1 垃圾库旁



■2 渗滤液处理站附近



■3 张家岭农用地



■4 双凤魏农用地

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508153



□1 飞灰固化车间固化物



□2 焚烧炉炉渣



☆1 厂区地下水上游



☆2厂区地下水下游



☆3 厂区地下水侧向



☆4 垃圾库边界

Tel: 027-83901064


E-mail: whhj_testing@163.com



报告编号: HJ202508153



☆5 渗滤液处理站下游



▲1 厂界东侧外 1m 处 1



▲2 厂界东侧外 1m 处 2



▲3 厂界南侧外 1m 处 1



▲4 厂界南侧外 lm 处 2



▲5 厂界西侧外 lm 处 1

Tel: 027-83901064

E-mail: whhj_testing@163.com






报告编号: HJ202508153



▲6 厂界西侧外 lm 处 2



▲7 厂界北侧外 1m 处 1



▲8 厂界北侧外 1m 处 2





# 武汉环景检测服务有限公司

# 检测报告



 报告编号:
 HJ202508152

 武汉城市生活垃圾焚烧发电厂

 项目名称:
 环境空气监测

 委托单位:
 武汉城市生活垃圾焚烧发电厂

 监测类别:
 委托检测

 报告日期:
 2025 年 10 月 9 日



### 报告编制说明

- 1、报告无本公司报告专用章、骑缝章及 (五)章 章无效。
- 2、报告内容涂改、缺页、增删无效;报告无三级审核无效。
- 3、检测委托方如对本报告有异议,须于收到本报告之日起十日 内以书面形式向我公司提出,逾期不予受理。无法保存、复现的样 品不受理申诉。
  - 4、未经本公司书面批准,不得部分复制本报告。
  - 5、本报告及数据不得用于商品广告,违者必究。

#### 本机构通讯资料:

单位全称: 武汉环景检测服务有限公司

地 址: 武汉市东西湖区宏图大道银潭路

天龙钢构工业园 1 号综合楼 2 楼

邮政编码: 430040

电 话: 027-83901064



报告编号: HJ202508152

第1页共9页

#### 1、基本情况

受武汉城市生活垃圾焚烧发电厂委托,根据委托方提供的监测方案,我公司于2025年8月23日~2025年8月26日对武汉城市生活垃圾焚烧发电厂的环境空气质量现状进行了现场监测。依据实际监测分析结果,编制了此报告。

### 2、企业概况

表 2-1 企业基本情况

企业名称	武汉城市生活垃圾焚烧发电厂
企业地址	湖北省武汉市江夏区郑店街雷竹村
生产工况	监测期间内正常运行

### 3、监测方案

依据检测方案的要求,按照《环境空气质量手工监测技术规范》 HJ 194-2017 等相关环境监测技术规范,对武汉城市生活垃圾焚烧发 电厂的环境空气质量现状进行了监测。具体监测内容见表 3-1:

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508152

第2页共9页

表 3-1 采样信息一览表

监测 类型	监测点位	点位 编号	松川海赤	监测 频次	采样设备型号及 编号	样品保 存方式
	张家岭	Oı		1 次×3 天 (日均值)	MH1200 全自动大 气/颗粒物采样器 WHHJ/YS-04-039 WHHJ/YS-04-040 WHHJ/YS-04-041	
环境 空气	双凤魏	O2	镉、铊、锑、砷、铅、铬、钴、铜、锰、镍、颗粒物、臭气浓度、氨气、硫化氢、甲硫醇、 氯化氢	4 次×3 天 (氨气、 硫化氢、 甲硫醇、	恒温恒流大气/颗粒 物采样器 WHHJ/YS-04-053	常温避光
	尖山曹	O3		氯化氢小 时值)	WHHJ/YS-04-054 WHHJ/YS-04-055 WHHJ/YS-04-083 WHHJ/YS-04-085 WHHJ/YS-04-086	

### 4、检测仪器、分析方法及方法来源

检测仪器、分析方法及方法来源见表 4-1:

表 4-1 分析仪器、分析方法及方法来源一览表

	Amero	检测仪器	A 45-2-3-4	<b></b>	AA UU TR
Ŧ	<b>金测项目</b>	型号、名称、编号	分析方法	方法来源	检出限
	颗粒物	EX125ZH 电子天平 WHHJ/YS-01-024	重量法	НЈ 1263-2022	0.007 mg/m ³
	臭气浓度	1	三点比较式臭袋 法	НЈ 1262-2022	1
环境	镉	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	0.00003 μg/m³
空气	铊	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	0.00003 μg/m³
	锑	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	0.00009 μg/m³

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508152

第3页共9页

4A SWITE CI	检测仪器	V4274	4.4.4.75	46.01.00	
检测项目	型号、名称、编号	分析方法	方法来源	检出限	
种	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	0.0007 μg/m³	
铅	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	HJ 657-2013	0.0006 μg/m³	
铬	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	0.001 μg/m³	
钴	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	0.00003 μg/m	
铜	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	0.0007 μg/m³	
锰	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	0.0003 μg/m³	
镍	ICP-MS 1000G 电感耦合等离子体质谱仪 (11800220110041)	电感耦合等离子 体质谱法	НЈ 657-2013	0.0005 μg/m³	
氨气	UV-1800SPC 紫外可见分光光度计 WHHJ/YS-01-012	纳氏试剂分光光 度法	НЈ 533-2009	0.01 mg/m ³	
硫化氢	V-1100 可见分光光度计 (光谱仪) WHHJ/YS-01-027	亚甲基蓝分光光 度法	《空气和废气监测 分析方法》 (第四版增补版)	0.001 mg/m ³	
甲硫醇	Nexis GC-2030AF 气相色谱仪 (11800220110058)	气相色谱法	GB/T 14678-1993	0.0002 mg/m ²	
氯化氢	YC7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	HJ 549-2016	0.02 mg/m ³	

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508152

第4页共9页

### 5、质量控制及质量保证

- (1) 检测人员经过本公司专业上岗培训并为合格专业检测人员。
- (2) 所使用仪器、设备均经计量检定,且在有效期内使用。
- (3) 数据和检测报告实行三级审核制度,检测过程按照本公司 质量管理规定进行全程序质量控制。
- (4)运行工况满足检测技术规范要求,严格按照国家标准与技术规范实施检测。
- (5) 检测实行空白检测、重复检测、加标回收、控制样品分析 等质控措施,确保检测数据的准确性。

### 6、检测结果

环境空气检测结果见表 6-1~6-5, 监测期间气象情况见表 6-6:

表 6-1 环境空气小时值检测结果(单位: mg/m³)

	HE WAY IN ALL	A MINTER	检测	结果	= 1.4
采样日期	监测点位	检测项目	第一次	第二次	最大值
		氨气	0.13	0.07	0.13
	〇1 张家岭	硫化氢	0.003	0.002	0.003
		氯化氢	0.201	0.185	0.201
		氨气	0.14	0.09	0.14
2025年8月23日	〇2 双凤魏	硫化氢	0.002	0.002	0.002
0 /J 25 H		氯化氢	0.195	0.192	0.195
		氨气	0.12	0.08	0.12
〇3 尖山曹	〇3 尖山曹	硫化氢	0.003	0.002	0.003
	氯化氢	0.186	0.185	0.186	

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508152

第5页共9页

表 6-2 环境空气小时值检测结果 (单位: mg/m³)

₩ 🗆 🖦	HARMA IN AN			检测	<b> 结果</b>		<b>=</b> 1.44
采样日期	监测点位	检测项目	第一次	第二次	第三次	第四次	最大值
		氨气	0.13	0.10	0.08	0.09	0.13
	O. BUENA	硫化氢	0.002	0.005	0.003	0.002	0.005
	〇1 张家岭-	甲硫醇	ND (0.0002)	ND (0.0002)	ND (0.0002)	ND (0.0002)	/
		氯化氢	0.189	0.143	0.192	0.175	0.192
	0. 10.00	氨气	0.11	0.14	0.12	0.13	0.14
2025年		硫化氢	0.002	0.002	0.002	0.002	0.002
8月24日	○2 双凤魏-	甲硫醇	ND (0.0002)	ND (0.0002	ND (0.0002)	ND (0.0002)	1
		氯化氢	0.088	0.203	0.130	0.148	0.203
		氨气	0.13	0.10	0.10	0.14	0.14
	02 45:1:3	硫化氢	0.002	0.002	0.003	0.003	0.003
	○3 尖山曹	甲硫醇	ND (0.0002)	ND (0.0002	ND (0.0002)	ND (0.0002)	1
	氯化氢	0.293	0.214	0.183	0.224	0.293	

注: "ND"表示未检出或低于方法检出限;

表 6-3 环境空气小时值检测结果 (单位: mg/m³)

₩₩□₩	116-701 - 44-	A WITE C		检测	结果		= 1.4
米科口期	及 採 日期 上 上 上 別 点 位 一 检 測 项 一 一 一 に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に の に る に の に の に る に の に る に る に る に る に る に る に る 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 に 。 。 。 。 。 。 。 。 。 。 。 。 。	检测项目	第一次	第二次	第三次	第四次	最大值
		氨气	0.13	0.07	0.06	0.11	0.13
	O akeas	硫化氢	0002	0.002	0.002	0.002	0.002
	○1 张家岭-	甲硫醇	ND (0.0002)	ND (0.0002)	ND (0.0002)	ND (0.0002)	1
2025 年		氯化氢	0.203	0.204	0.169	0.137	0.204
8月25日		氨气	0.14	0.13	0.05	0.08	0.14
	00 70 70 70	硫化氢	0.002	0.003	0.002	0.003	0.003
O2 xx,	〇2 双凤魏-	甲硫醇	ND (0.0002)	ND (0.0002)	ND (0.0002)	ND (0.0002)	1
		氯化氢	0.172	0.195	0.218	0.217	0.218

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508152

第6页共9页

	He book by 6-by	A WITE		检测结果			
采样日期	采样日期 监测点位	点位 检测项目 第一次	第二次	第三次	第四次	最大值	
		氨气	0.12	0.12	0.15	0.12	0.15
		硫化氢	0.002	0.003	0.002	0.002	0.003
	○3 尖山曹	甲硫醇	ND (0.0002)	ND (0.0002)	ND (0.0002)	ND (0.0002)	1
		氯化氢	0.169	0.211	0.177	0.184	0.211

注: "ND"表示未检出或低于方法检出限;

表 6-4 环境空气小时值检测结果(单位: mg/m³)

	116-my h-64	A WITT		检测	<b> </b> 结果		<b>B</b> #
采样日期	监测点位	检测项目	第一次	第二次	第三次	第四次	最大值
		氨气	0.10	0.08	1	1	0.10
	O. THE PLAN	硫化氢	0.002	0.002	1	1	0.002
	〇1 张家岭	甲硫醇	ND (0.0002)	ND (0.0002)	ND (0.0002)	ND (0.0002)	1
		氯化氢	0.188	0.190	1	1	0.190
		氨气	0.09	0.07	1	1	0.09
2025年		硫化氢	0.003	0.002	1	1	0.003
8月26日	○2 双凤魏	甲硫醇	ND (0.0002)	ND (0.0002)	ND (0.0002)	ND (0.0002)	1
		氯化氢	0.172	0.176	1	1	0.176
		氨气	0.13	0.12	1	1	0.13
	0.45.1.48	硫化氢	0.002	0.003	1	1	0.003
	〇3 尖山曹	甲硫醇	ND (0.0002)	ND (0.0002	ND (0.0002)	ND (0.0002)	1
		氯化氢	0.216	0.214	1	1	0.216

注: "ND"表示未检出或低于方法检出限;

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508152

第7页共9页

表 6-5 环境空气日均值检测结果 (单位: μg/m³; 颗粒物: mg/m³)

监测点位		i sed	检测结果	
<b>超</b> 测	检测项目	2025年8月23日	2025年8月24日	2025年8月25日
	颗粒物	0.147	0.156	0.138
	臭气浓度	<10	<10	<10
	镉	0.000865	0.000299	0.00109
	铊	0.000108	0.0000729	0.000135
	锑	0.00142	0.000483	0.000785
OT SKEPIP	砷	0.00823	0.00216	0.00545
○1 张家岭 -	铅	0.0158	0.00568	0.0139
	铬	0.00450	0.00126	0.00347
	钴	0.000778	0.000278	0.000576
	铜	0.00731	0.00209	0.0108
	锰	0.0335	0.00996	0.0226
	镍	0.00251	0.000747	0.00167
	颗粒物	0.165	0.167	0.125
	臭气浓度	<10	<10	<10
	镉	0.000580	0.000618	0.00184
	铊	0.000108	0.000122	0.000219
	鎌	0.00107	0.00107	0.00130
	砷	0.00431	0.00461	0.00995
○2 双凤魏	铅	0.0121	0.0123	0.0233
1	铬	0.00383	0.00380	0.00577
	钴	0.000793	0.000792	0.000958
	铜	0.00530	0.00555	0.0196
	锰	0.0289	0.0435	0.0383
1	镍	0.00189	0.00194	0.00275

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508152

第8页共9页

	44 mar =		检测结果		
监测点位	检测项目	2025年8月23日	2025年8月24日	2025年8月25日	
	颗粒物	0.147	0.143	0.139	
	臭气浓度	<10	<10	<10	
	镉	0.000570	0.000663	0.00115	
	铊	0.000111	0.000115	0.000167	
	锑	0.00108	0.00111	0.000944	
	砷	0.00336	0.00477	0.00676	
〇3 尖山曹	铅	0.0101	0.0122	0.0171	
	铬	0.00246	0.00334	0.00466	
	钴	0.000511	0.000674	0.000844	
	铜	0.00458	0.00475	0.0140	
	锰	0.0193	0.0233	0.0611	
	镍	0.00140	0.00191	0.00243	

注: "ND"表示未检出或低于方法检出限;

表 6-6 监测期间气象参数测试一览表

时间	天气	气温 (℃)	气压 (kPa)	风向	风速 (m/s)
	晴	43	100.2	西	1.8
2025年8月23日	晴	35	100.4	西南	2.2
	晴	36	100.4	南	2.5
	晴	40	100.5	南	2.1
2025年8月24日	晴	39	100.4	西南	1.8
	晴	37	100.5	南	2.0
	晴	37	100.5	西	2.4
	晴	39	100.6	西	2.0
2025年8月25日	晴	40	100.5	南	1.7
	晴	39	100.6	南	1.9

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508152

第9页共9页

时间	天气	气温 (℃)	气压 (kPa)	风向	风速 (m/s)
2025 17 2 17 2 2 17 17	晴	36	100.6	南	2.3
2025年8月26日	晴	37	100.6	南	2.0

### 7、质量控制结果

环境空气质量控制结果见表 7-1:

表 7-1 气样监测质控结果

检测项目	加标回收分析								
位测坝日	分析编号	回收率(%)	允许回收率(%)	结果评判					
	空白加标	98.0	90~110	符合要求					
der (), der	空白加标	97.8	90~110	符合要求					
氯化氢	空白加标	96.2	90~110	符合要求					
	空白加标	96.1	90~110	符合要求					

*****报告结束*****

编制: 极外级

宙核.

高温

答出,

È: ,_

4132

日期: ひ

475.10.9

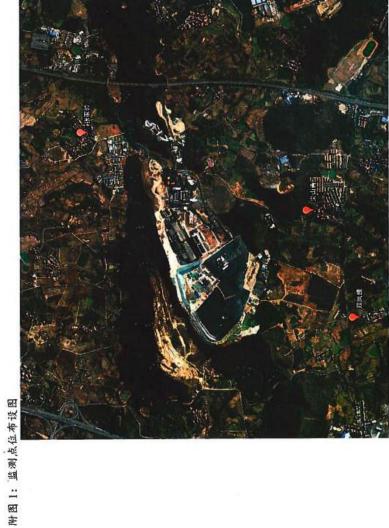
日期: 少水、

t. 10.7

_ 日期

Web: www.whhjtest.cn

Tel: 027-83901064


E-mail: whhj_testing@163.com

Web: www.whhitest.cn

E-mail: whhj testing@163.com

Tel: 027-83901064





HUANJING 武汉环縣 1整調 报告编号: HJ202508152

湖北鑫承胜咨询有限公司



报告编号: HJ202508152

附图 2: 现场监测照片



〇1 张家岭



○2 双凤魏



〇3 尖山曹



Tel: 027-83901064

E-mail: whhj_testing@163.com

附件 21-5: 雨水检测报告

附件18-5





# 武汉环景检测服务有限公司

# 检测报告



报告编号:	HJ202508039

项目名称: 长山口垃圾焚烧发电厂雨水监测

委托单位: 武汉市绿色环保能源有限公司

监测类别: 委托检测

报告日期: 2025年8月18日



### 报告编制说明

- 1、报告无本公司报告专用章、骑缝章及 4 章无效。
- 2、报告内容涂改、缺页、增删无效;报告无三级审核无效。
- 3、检测委托方如对本报告有异议,须于收到本报告之日起十日 内以书面形式向我公司提出,逾期不予受理。无法保存、复现的样 品不受理申诉。
  - 4、未经本公司书面批准,不得部分复制本报告。
  - 5、本报告及数据不得用于商品广告,违者必究。

### 本机构通讯资料:

单位全称: 武汉环景检测服务有限公司

地 址:武汉市东西湖区宏图大道银潭路

天龙钢构工业园 1号综合楼 2楼

邮政编码: 430040

电 话: 027-83901064



报告编号: HJ202508039

第1页共3页

### 1、基本情况

受武汉市绿色环保能源有限公司委托,根据委托方提供的监测方案, 我公司于2025年8月11日对长山口垃圾焚烧发电厂雨水排放现状进行了现场监测。依据实际监测分析结果,编制了此报告。

### 2、企业概况

表 2-1 企业基本情况

企业名称	长山口垃圾焚烧发电厂
企业地址	湖北省武汉市江夏区郑店街雷竹村张家岭村
生产工况	监测期间内正常运行

### 3、监测内容

依据监测方案的要求,按照《污水监测技术规范》HJ91.1-2019 等相关环境监测技术规范,对长山口垃圾焚烧发电厂的雨水排放现 状进行了监测。具体监测内容见表 3-1:

表 3-1 采样信息一览表

监测 类型	监测点位	点位 编号	检测指标	监测频次	采样设备型 号及编号	样品保存 方式	
废水	雨水总排口	*1	悬浮物、化学需氧量、氨 氮	3 次×1 天	采样器	加保护剂避光冷藏	

Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508039

第2页共3页

### 4、检测仪器、分析方法及方法来源

检测仪器、分析方法及方法来源见表 4-1:

表 4-1 检测仪器、分析方法及方法来源一览表

检测项目		检测仪器	A45-2-54	<b>一</b> 社 本海	检出限	
担	2別項目	型号、名称、编号	分析方法	方法来源	TO THE PER	
	悬浮物	AR224CN 电子天平 WHHJ/YS-01-005	重量法	GB 11901-89	4 mg/L	
废水	化学需氧量	KN-CODIICOD 恒温消解仪 WHHJ/YS-02-053	重铬酸盐法	НЈ 828-2017	4 mg/L	
	氨氮	V-1100 可见分光光度计(光谱 仪) WHHJ/YS-01-027	纳氏试剂分光光度法	НЈ 535-2009	0.025 mg/I	

### 5、质量控制及质量保证

- (1)检测人员经过本公司专业上岗培训并为合格专业检测人员。
  - (2) 所使用仪器、设备均经计量检定,且在有效期内使用。
- (3)数据和检测报告实行三级审核制度,检测过程按照本公司 质量管理规定进行全程序质量控制。
- (4)运行工况满足检测技术规范要求,严格按照国家标准与技术规范实施检测。
- (5) 检测实行空白检测、重复检测、加标回收、控制样品分析 等质控措施,确保检测数据的准确性。

Tel: 027-83901064

E-mail: whhi testing@163.com



报告编号: HJ202508039

第3页共3页

#### 6、检测结果

废水检测结果见表 6-1:

表 6-1 废水检测结果表 [单位: mg/L]

监测点位	40 14 LJ #0	4A.inivæ 🖂		检测结果			
血水水工	采样日期	检测项目 -	第一次	第二次	第三次	平均值	
★1 雨水总排口		悬浮物	8	9	8	8	
	2025年8月11日	化学需氧量	14	13	17	15	
		夏夏	0.156	0.175	0.152	0.161	



### 7、质量控制结果

水样质量控制结果见表 7-1~表 7-2:

表7.1 水样收测压熔结里

监测项目	全程序 空白	检出限	评价	平行样品 測定浓度	平行双样 相对偏差	平行双样相对 偏差允许限值	评价
化学需氧量	ND	4 mg/L	合格	16.9 mg/L , 16.4 mg/L	1.5%	≤20%	合格
震震	ND	0.025 mg/L	合格	0.148 mg/L、0.156 mg/L	2.6%	≤15%	合格
备注	2、平行7 (HJ/T37	双样偏差依据 /3-2007)中部	《固定 長1相弁	方法检出限; 污染源监测质量保证与质量 长要求; 分析方法检出限,方法检出			

### 表 7-2 水样监测质控结果

检测项目	加标回收分析									
	分析编号	回收率(%)	允许回收率(%)	结果评判						
氨氮	HJ25073015-1-1-1 加标	97.0	95~105	符合要求						

*****报告结束****

日期: 2015.8.18

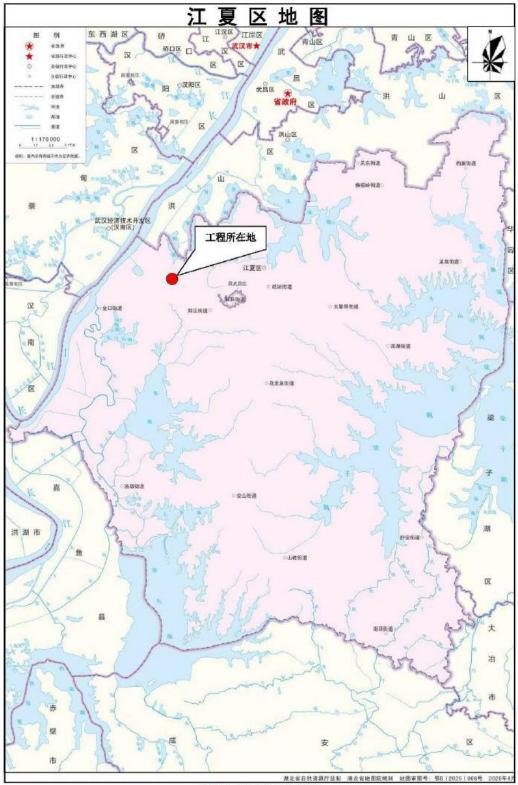
Tel: 027-83901064

E-mail: whhj_testing@163.com



报告编号: HJ202508039

附图:现场监测照片

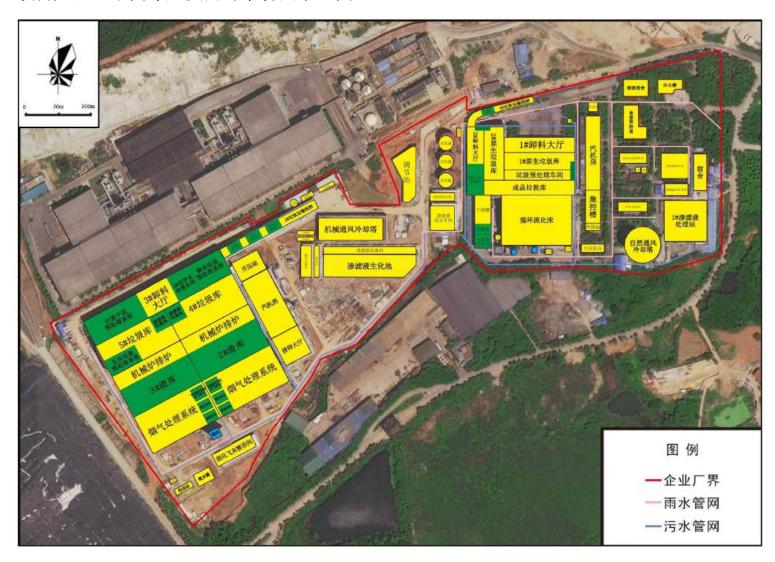



★1 雨水总排口

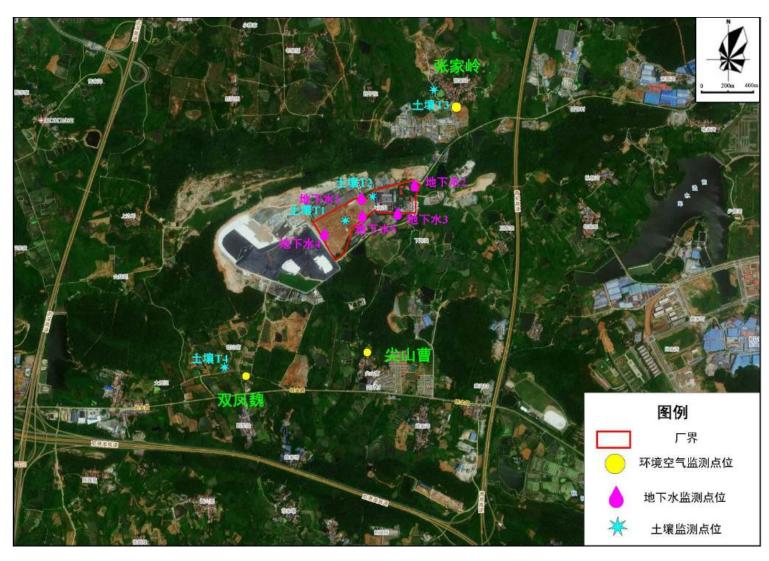
Tel: 027-83901064

E-mail: whbj_testing@163.com

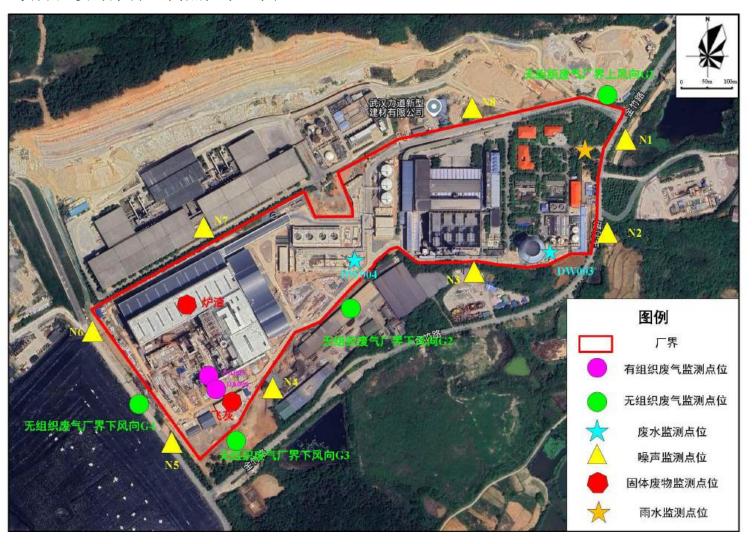
# 附图 1: 建设项目地理位置图




附图1 项目地理位置图


附图 2: 项目范围及周边环境示意图




附图 3: 项目厂区总平面布置及雨污水管网示意图



附图 4-1: 项目验收环境质量监测点位示意图



附图 4-2: 项目验收污染源监测点位示意图



### 建设项目竣工环境保护"三同时"验收登记表

填表单位(盖章):湖北鑫承胜咨询有限公司

填表人(签字):

项目经办人(签字):

						(4)			-712					
	项目名称		武汉城市生活垃 资源化预处理及5			项目:	代码		44-02-077686、 44-03-050705、	建设地	点	湖北省i	武汉市江夏区郑启	后街雷竹村
			项目		i		2020-420115	5-77-02-064089						
	行业类别(分类管理名录)		四十一、电力、热力生产和供应业,89生物质 能发电4417,生活垃圾发电(掺烧生活垃圾发 电的除外);		字 <b>际生产能力</b> 字际生产能力 字		□新建☑改扩建□技术改造			项目厂区中心经纬度		E: 114° 13'16.2841" N: 30° 21'16.2091",		
建设项目	设计生产能力		本项目建成后全厂日焚烧生活垃圾2000吨/日。新增生活垃圾预处理能力2600吨/日、厨余垃圾预处理能力500吨/日。				项目建成后全厂生活垃圾焚烧处理能力保持2000吨d不变,将优先保证生活垃圾的处理,在不影响生活垃圾处理的前提下进行般工业固体废弃物的掺烧处理,一般工业性体废弃物掺烧比例不超过焚烧总量的30%其中污泥掺烧比例不高于10%。新增生活垃圾预处理能力2600吨/d、厨余垃圾预处理能力500吨/d不变。		垃圾的处 上下进行一 一般工业固 量的30%, 「增生活垃	<b></b> 扱的处 进行一 工业固 <b>130%</b> , 生活垃		中国电力工程顾问集团中南电力设计院有限公司		
	环评文件审批机关		武沙	武汉市生态环境局		审批	文号	武环审〔2021〕13号			环评文件	<b>牛类型</b>	报告书	
	开工日期	2022年12月		竣工日期		2025年7月		排污许可证申领时间		2025年5月23日				
	环保设施设计单位		光大环保技术装备(常州)有限公司		<b>环保设施施工单位</b> 杭州正晖建		军建设工程有限公	建设工程有限公司  本工程		午可证编号	可证编号 914201157646044			
	<b>验收单位</b> 湖北		湖北鑫	承胜咨询有限公司		1 私保护施收制 6 位		武汉华正环境检测技术有限公司、武汉环景检测服务有限公司、湖北微谱技术有限公司					焚烧炉负荷: 125%	
	投资总概算(万元)		73895		环保投资总概算 (万元)		8586			所占比例(%)		11.5	58	
	实际总投资(万元	实际总投资(万元)		80000		实际环保投资(万元)		9000		所占比例(%)		(%)	11.25	
	废水治理 (万元)	2125	废气治理(万元	<b>4800</b>	噪声流	理(万元)	108	固体废物治理(フ	5元) 830	绿化及生态	(万元)	32	其他 (万元)	1105
	新增废水处理设施能力			1200t/a		新增废气处理设施能力		/		年平均工作时		寸	876	0
	运营单位	武汉	又市绿色环保能源	有限公司	运营单	单位社会统一信	用代码	91420115764604453R		验收时间		/		
	污染物	原有排放	本期工程实际排	本期工程允许	本期工程产	本期工程自身	本期工程实	本期工程核定	本期工程"以新	全厂实际排放	女总 全厂	核定排放总	区域平衡替代	排放增减量
	行来彻	量(1)	放浓度(2)	排放浓度(3)	生量(4)	削减量(5)	际排放量(6)	排放量(7)	带老"削减量(8)	量(9)		量(10)	削减量(11)	(12)
污染物	废水													
排放达	化学需氧量			50			17. 5			17.5		17.5		
标与总	氨氮			5			1.75			1.75		1.75		
量控制	废气													
(工业	烟尘			30			2.7			40.28		76.57		
建设项	二氧化硫			100			22.58			29.20		150		
目详	氮氧化物			100			218.12			326.22		903.34		
填)	工业固体废物													
	与项目有关的其他 特征污染物													
					1		1							

**注:** 1、排放增减量: (+)表示增加, (-)表示减少。2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+(1)。3、计量单位: 废水排放量——万吨/年; 废气排放量——万标立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放浓度——毫克/升